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An accurate numerical scheme for the
contraction of a bubble in a Hele–Shaw cell
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Abstract

We report on an accurate numerical scheme for the evolution of an
inviscid bubble in radial Hele–Shaw flow, where the nonlinear boundary
effects of surface tension and kinetic undercooling are included on
the bubble-fluid interface. As well as demonstrating the onset of
the Saffman–Taylor instability for growing bubbles, the numerical
method is used to show the effect of the boundary conditions on the
separation (pinch off) of a contracting bubble into multiple bubbles,
and the existence of multiple possible asymptotic bubble shapes in the
extinction limit. The numerical scheme also allows for the accurate
computation of bubbles which pinch off very close to the theoretical
extinction time, raising the possibility of computing solutions for the
evolution of bubbles with non-generic extinction behaviour.
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1 Introduction

In applied mathematics, expanding or contracting bubbles in a Hele–Shaw cell
is a canonical example of a free boundary problem, where, along with Laplace’s
equation, one must solve for the position of a moving interface. It serves both
mathematically and experimentally as a model for more complicated free
boundary problems, for instance Stefan (melting/freezing) problems [16, 17],
and groundwater flow [19]. Expanding bubbles are frequently a topic of
numerical methods [8]; in this case the bubble exhibits the Saffman–Taylor
instability [19], with the interface developing long fingering patterns, which
presents a significant challenge for numerical schemes.
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The case of contracting bubbles is less studied, although there are interesting
phenomena involved that are still active topics of research. A contracting
bubble may shrink to a single point [6, 14] or, depending on the initial shape,
separate or ‘pinch off’ into multiple bubbles before the time of extinction [5,
11]. We describe an accurate and efficient numerical scheme that focuses
on contracting bubbles (although it is still applicable to expanding ones),
including a rescaled version that allows for the shape of a single bubble to
be accurately computed at a point very close to its extinction point. Our
numerical scheme allows for the inclusion of the nonlinear boundary effects of
surface tension and kinetic undercooling.

In the remainder of this section we describe the problem and derive the near-
circle stability analysis, which indicates the effect of the nonlinear boundary
conditions on expanding or contracting bubbles. In Section 2, we describe
our numerical scheme and use it to demonstrate phenomena for contracting
bubbles: the effect of surface tension and kinetic undercooling on pinch off,
and the accurate computation of a bubble which pinches off very close to
its theoretical extinction time, which raises the possibility of non-generic
asymptotic bubble shapes [10]. Lastly, we demonstrate the existence of
multiple asymptotic extinction shapes for certain parameter values, which we
recently reported on elsewhere [2]. We discuss possible directions of future
study in Section 3.

1.1 Formulation

The equations describing the two dimensional Hele–Shaw problem with surface
tension and kinetic undercooling are well known [9, 18]. We consider a single
connected inviscid bubble Ω(t) ⊂ R2 , with surface tension and kinetic
undercooling acting on the boundary ∂Ω(t), where the area A of the bubble
is changing at a constant rate:

dA

dt
= −2πQ . (1)
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Let φ be the velocity potential of the viscous fluid outside the bubble. The
potential is related to the fluid pressure p by φ = −k(p− p0) , where p0 is
the pressure in the bubble (assumed constant) and k is a constant dependent
on the fluid viscosity and plate separation width. The free boundary problem
for φ is

∇2φ = 0 (x,y) ∈ R2\Ω(t) , (2)

vn =
∂φ

∂n
(x,y) ∈ ∂Ω(t) , (3)

φ = cvn + σκ (x,y) ∈ ∂Ω(t) , (4)

φ ∼ −Q log
√
x2 + y2 (x,y) → ∞ , (5)

where vn is the normal velocity of the interface, and c and σ are the ki-
netic undercooling and surface tension parameters, respectively. Contracting
bubbles correspond to Q > 0 , while expanding bubbles have Q < 0 (see Fig-
ure 1). While we consider a constant source term for simplicity, the methods
of this article extend readily to a time dependent source term Q = Q(t) ,
which is a topic of current interest in the area of controlling the viscous
instability [4, 3, 13].

1.2 Expanding bubbles

In the case of expanding bubbles (Q < 0) the interface exhibits the Saffman–
Taylor instability [19], and develops long ‘fingers’ of the inviscid fluid. In the
absence of regularisations such as surface tension, the interface generically
develops cusps (curvature singularities) in finite time [9, 1], while surface
tension suppresses these singularities, allowing the solution to continue for all
time; the interface develops long fingers that leave behind ‘fjords’ of viscous
fluid [12]. Surface tension in this model serves the same purpose as finite
viscosity in ill-posed ideal flow problems exhibiting Rayleigh–Taylor or Kelvin–
Helmholtz instabilities, which otherwise develop curvature singularities [7,
e.g.].
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Contracting
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φ = cvn + σκ
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φ ∼ −Q log
√
x2 + y2

∇2φ = 0

Figure 1: A schematic of the problem (2)–(5) of a bubble in a Hele–Shaw
cell with surface tension and kinetic undercooling effects considered on the
boundary.

The suppression of singularities is evident in the following linear stability
analysis, as surface tension stabilises the highest order modes. The system (2)–
(5) admits as a solution the perfectly circular bubble of radius s0(t) where

ds0

dt
= −

Q

s0
. (6)

Linear stability analysis [2] shows that if the circle is perturbed by an nth mode
term, that is the interface is given by s(θ, t) = s0 + εγn cosnθ in polar coor-
dinates, then the amplitude γn of this perturbation evolves according to

1

γn

dγn

ds0
=

n− 1

s0 + nc
+
σ

Q

n(n2 − 1)

s0(s0 + nc)
. (7)

For expanding bubbles (Q < 0) it follows that for σ > 0 and c > 0 , the high
modes γn decay for all sufficiently large n, whereas arbitrarily high modes are
unstable for σ = 0 . Thus surface tension suppresses curvature singularities
that occur in the zero surface tension case. Additionally, the second mode γ2
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Figure 2: The evolution of an expanding bubble with six-fold symmetry, with
flux Q = −1 , surface tension σ = 0.02 , and kinetic undercooling (a) c = 0
and (b) c = 0.2 (initial and final interfaces are black and red, respectively).
The radius beyond which the sixth mode perturbation becomes unstable
(found from (8)) is shown in dashed red. Kinetic undercooling acts to increase
this radius and delay the formation of fingers.

is always stable, while the nth mode is stable when the radius s0 is sufficiently
small, so that it satisfies

s0 <
n

n− 2

[
c+

σ

(−Q)
(n2 − 1)

]
, n > 3 . (8)

Increasing surface tension σ or kinetic undercooling c in (8) increases the
radius at which the nth mode becomes unstable. In Figure 2 we demonstrate
this onset of instability of the sixth mode of perturbation, first with surface
tension alone, and then with both surface tension and kinetic undercooling.
These solutions were computed using the numerical scheme described in
Section 2.
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1.3 Contracting bubbles

The case of contracting bubbles corresponds to t increasing and Q > 0 in (2)–
(5). For zero surface tension and zero kinetic undercooling, bubbles generically
shrink to ellipses unless they pinch off first [6, 5, 15, 10]. For nonzero surface
tension the extinction shape is generically circular, although pinch off is still
a possibility. When both nonlinear boundary effects are included (7) implies
they are in competition, with surface tension stabilising the boundary and
kinetic undercooling acting to destabilise it. We use the numerical scheme
of the next section to demonstrate the phenomenon of pinch off with these
nonlinear boundary effects. We find that surface tension acts to delay or
prevent pinch off, whereas kinetic undercooling causes it to occur earlier than
otherwise.

If the bubble does not pinch off but instead shrinks to a single point, then
there is a complex bifurcation structure in the asymptotic bubble shape, which
we recently reported [2]. We omit the details here; however, we numerically
demonstrate the existence of multiple extinction shapes for certain parameter
values in the next section (see Figure 5).

2 Numerical scheme and results

In this section we describe our numerical scheme for solving the system (2)–(5).
This scheme is based on a spectral (power series) representation of a (complex-
valued, analytic) conformal mapping function from the unit disc to the
evolving fluid region. We also describe a scaled version of the method that
allows the evolution of a bubble very close to extinction to be accurately
captured.
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2.1 Unscaled method

Let z = x + iy be the complex spatial variable, and z = g(ζ, t) be a time-
dependent mapping function which maps the unit disc in the ζ plane confor-
mally to the fluid region Ω(t). The mapping function g is analytic in the
punctured unit disc, with a simple pole at the origin corresponding to the
far-field in the physical plane. The mapping function is determined by the
conditions on the interface, which may be written entirely in terms of g on
the unit circle:

<{gtζgζ} = <(ζΦζ) = Q− c<{ζVζ}− σ<{ζKζ} , |ζ| = 1 , (9)

where Φ = φ+ iψ is the complex velocity potential, and V and K are complex
analytic functions in the unit disc whose real boundary data are equal to the
normal velocity and curvature respectively:

<{V} = vn =
<{gtζgζ}

|ζgζ|
, <{K} = κ =

<{ζ(ζgζ)ζζgζ}

|ζgζ|3
, (10)

on |ζ| = 1 . For simplicity and numerical stability we assume symmetry in
the x and y axes. The mapping function g, along with its spatial and time
derivatives, has the power series representation

g(ζ, t) =
∞∑
n=0

an(t)ζ
2n−1 , ζgζ =

∞∑
n=0

(2n− 1)an(t)ζ
2n−1 ,

ζ(ζgζ)ζ =

∞∑
n=0

(2n− 1)2an(t)ζ
2n−1 , gt =

∞∑
n=0

ȧn(t)ζ
2n−1 , (11)

where an(t) are unknown coefficients; symmetry in the x axis implies that
the an are real.

To solve for the evolution of the coefficients an(t) we truncate the series
at N terms. The N fully implicit equations that we require come from
satisfying (9) at N equally spaced points

ζj = e
iπj/4N , j = 0, . . . ,N− 1 , (12)
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which lie in the first quadrant on the unit circle. To compute these implicit
equations we first evaluate g, its derivatives, and subsequently vn and κ, at
each of the ζj. Computing V and K from vn and κ is very simple in the space
of their power series coefficients; for example,

vn =

∞∑
n=−∞bnζ

n ⇒ V = b0 +

∞∑
n=1

2bnζ
n , (13)

plus an arbitrary imaginary constant we take to be zero (note that bn = bn ,
since vn is real). From here we evaluate ζVζ and ζKζ by differentiation of the
power series and substitute into (9). The coefficients an must be advanced in
time using a fully implicit ode solver; we implement our method in Matlab
and use the implicit time stepping algorithm ode15i.

2.2 Scaled method

To examine the behaviour of bubbles very close to extinction the above
method is not optimal. Instead, we carry out a time dependent rescaling
in space, which means the bubble is always O(1) in size. This rescaling
requires the assumption that the bubble remains connected. Let λ(t) be
a characteristic length scale of the bubble that goes to zero as the bubble
approaches extinction, and define a new mapping function G and time like
variable T :

g(ζ, t) = λG(ζ, T) , T = − log λ . (14)

The image of the unit circle under G is now the bubble shape scaled to be of
size O(1), and time is stretched such that as the bubble tends to extinction
λ→ 0+ and therefore T → ∞ . We again write G as a power series:

G(ζ, T) =
∞∑

n=−1

An(T)ζ
n . (15)
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The area A of the bubble is

A =
1

2i

∮
∂Ω

z dz = −
λ2

2i

∮
|ζ|=1

G(1/ζ, T)Gζ(ζ, T)dζ = −πλ2
∞∑
n=0

nA2n

(the latter a consequence of the residue theorem). Differentiating with respect
to unscaled time t and using (1) we obtain

λ̇λ =
1

QB(T)
, B(T) =

∞∑
n=0

nAn(An −A
′
n) (16)

(here the prime ′ represents differentiation with respect to T). The governing
equation (9) becomes

e−T
[
<{(G−GT)ζGζ}+QB

]
= QBc<{ζV̂ζ}+ σ<{ζK̂ζ} , |ζ| = 1 , (17)

where V̂ and K̂ are the functions analytic in the unit disc such that

<{V̂} =
<{(G−GT)ζGζ}

|ζGζ|
, <{K̂} =

<{ζ(ζGζ)ζζGζ}

|ζGζ|3
, (18)

on |ζ| = 1 .

We have not yet specified the scaling λ. Given our assumptions of symmetry,
the bubble will always be centred about the origin which will therefore be
the extinction point, assuming pinch off does not occur. Subsequently, we
use the positive x intercept λ(t) = g(1, t) as the scaling, noting that λ→ 0+

as the bubble shrinks to a point, as required. This is equivalent to setting

G(1, T) = 1 . (19)

To fix the scaling parameter λ we replace one of the equations from the
discretisation of (17) with (19). Otherwise, the coefficients An are evolved in
the same manner as the an in the unscaled version.
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Both the scaled and unscaled versions are very efficient as we use the fast
Fourier transform to compute boundary values from power series repre-
sentations, and vice-versa. In producing the numerical results we used
N = 128 terms. The scheme runs in the order of seconds on a modern
desktop computer. The spatial discretisation converges spectrally in num-
ber of modes N, thus the major source of numerical error for contracting
bubbles is generally in the time stepping. However, for expanding bubbles,
the formation of fingers (corresponding to singularities near the unit disc in
the ζ plane) has a strong negative impact on the convergence of the power
series (11). This method is thus most effective for contracting bubbles, while
not well suited to resolving expanding bubbles far into the regime of finger
formation.

2.3 Results

In addition to the solutions for expanding bubbles shown in Figure 2, computed
using the unscaled method above, we examine both the phenomenon of pinch
off and the existence of multiple asymptotic bubble shapes, which both require
the scaled method to treat the problem near the extinction time.

To examine pinch off we use an initially ‘peanut’ shaped bubble of the form

G(ζ, 0) =
ζ−1 + α sin ζ
1+ α sin 1

, 0 < α < 1 , (20)

where the parameter α controls the initial shape of the bubble; the larger α,
the closer to pinch off (the denominator in (20) ensures that (19) is satisfied
at the initial time). In Figure 3 we plot the numerical solutions of a bubble
with this peanut shaped initial condition, using our scaled method. This plot
demonstrates the impact of the two nonlinear boundary conditions: surface
tension acts to delay or even prevent pinch off, while kinetic undercooling
induces pinch off, or causes it to occur at an earlier time than when kinetic
undercooling is zero.
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Figure 3: Three examples of the evolution of an initially peanut shaped
bubble (20) (with α = 0.8) with Q = 1 and over the same time period
t ∈ [0, 0.041] (initial and final interfaces are black and red, respectively): (a)
σ = c = 0 , and the bubble pinches off in finite time; (b) σ = 1 , c = 0 , and
the surface tension prevents pinch off; (c) σ = 0 , c = 1 , and the kinetic
undercooling causes pinch off to occur at an earlier time, resulting in an
unphysical self-overlapping of the boundary.
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Figure 4: The evolution of initially peanut shaped bubble (20) (with α = 0.72)
using the scaled scheme outlined in Section 2 with Q = 1 and σ = c = 0

(initial and final interfaces are black and red, respectively). The bubble
pinches off when the bubble has nearly contracted to a point.

Another interesting topic is what happens in the borderline case between pinch
off and extinction. For an initial condition given by (20) with α sufficiently
small there is no pinch off and for σ = c = 0 the asymptotic bubble shape is
elliptic. For sufficiently large α pinch off occurs. There must be a borderline
value of α between the two regimes; in this borderline case the limiting shape
of the bubble is not elliptical even in the absence of surface tension and kinetic
undercooling (this special case is discussed by King and McCue [10]). Our
scaled method is particularly effective in the numerical solution of bubbles
near this borderline case; in Figure 4 we plot the evolution of a bubble that
pinches off when the bubble has nearly contracted to a point.

Finally, we use our scheme to show the existence of multiple asymptotic
(extinction-limit) bubble shapes. We choose an initially elliptical initial
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Figure 5: The evolution of initially elliptical shaped bubble (21) using the
scaled scheme outlined in Section 2 with Q = 1 , σ = 0.35 and c = 1 (initial
and final interfaces are black and red, respectively): (a) the aspect ratio
is β = 0.6 and the bubble heads to a circle; (b) β = 0.4 and the bubble
heads towards an infinitely thin slit, demonstrating the existence of multiple
asymptotic bubble shapes for the parameter set 1

3
< σ/(cQ) < 1

2
.

condition of the form

G(ζ, 0) =
1+ β

2

1

ζ
+
1− β

2
ζ , 0 < β < 1 . (21)

The parameter β is the aspect ratio of the ellipse. In Figure 5 we plot the
numerical solution obtained from our scaled method for identical parameter
values but slightly different initial conditions. The slightly fatter ellipse tends
to a circle, while the thinner tends to an infinitely thin ‘slit’ as T → ∞ (the
extinction limit). This nonunique extinction behaviour occurs in a specific
parameter range 1

3
< σ/(cQ) < 1

2
, a result which we describe in greater depth

elsewhere [2].
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3 Discussion

We developed a highly accurate and efficient numerical scheme for computing
the evolution of a bubble in Hele–Shaw flow with surface tension and kinetic
undercooling effects on the boundary. This scheme is used to demonstrate
the effect of the nonlinear boundary conditions on bubbles pinching off into
multiple bubbles, and to show the existence of multiple asymptotic bubble
shapes, for certain parameter values, for bubbles which shrink to a point.

The scaled version of the scheme is particularly effective at capturing the
behaviour of a bubble very close to the point at which it becomes extinct.
The method is also capable of demonstrating the onset of instability for an
expanding bubble, although it is not as effective at long term finger formation
as other boundary integral methods designed for the purpose [12] and level
set methods [8], which have the advantage that they continue past pinch off.

The numerical results raise opportunities for further work. There is the
interesting bifurcation structure in the asymptotic bubble shape which we
recently reported [2]. Additionally, we intend to expand upon the phenomenon
of pinch off and the effects of the boundary conditions thereon. In particular,
we are interested in the existence of non-generic asymptotic bubble shapes that
may occur in the limit that pinch off occurs at the theoretical extinction time.
This implies the existence of non-elliptical extinction for the unregularised
(σ = c = 0) problem [10], and non-circular extinction for the purely surface
tension (c = 0) problem.
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