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Abstract

Fonterra, a New Zealand Dairy Company, processes milk into various
products, including milk powder and cheese, for export all around the
world. The challenge for Fonterra is to guarantee that the composition
of a product meets agreed contract specifications. The Study Group
was asked to determine if the calibration monitoring scheme currently
in place at Fonterra could be improved and what other information
could be derived from monitoring. As a result of the Study Group’s
deliberations, a number of recommendations have been made—one
of which has already been implemented (scanning a check-cell daily
to monitor the instruments’ performance). Fonterra are currently
investigating the impact of some of the other recommendations made
by the group, including switching to using mean values from median
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1 Background

The dairy industry, like many others, makes multiple measurements to de-

termine

product composition (see Figure 1 for an example of Fonterra’s

production process). Traditionally, samples have been taken and sent to a lab-
oratory for testing (referred to as the “reference method”). These methods are
often slow, sometimes taking hours or days to give a result. As a consequence
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of this, rapid instrument methods that are much cheaper and faster to use
are becoming increasingly common. However, control charting suggests that
these rapid methods are often be unstable relative to the reference method
and so the accuracy of the rapid method must be carefully monitored.

For example, the moisture content of milk powder is an important parameter,
not least because the moisture content must be less than 5% by weight for
the product to be legally called milk powder. In the case of moisture, one
method for reference testing involves three weighing stages, followed by the
sample being dried for a minimum of three hours in a 102°C oven. This
is a time-consuming process, as there are very exacting requirements on
the glassware, oven, balance calibration, etc. This gravimetric method only
measures free water; water tied up in the powder as water of crystallisation is
not included in this moisture result. Other properties that are tested include
protein and fat levels.

As technologies have developed, Fonterra now use a range of rapid test
methods that are purported to provide test results for the same attributes.
There are many technologies that can be used but they have focused their
attention on absorbance/reflectance of near infrared (NIR) light by the sample
and the development of a quantitative calibration based on NIR. The NIR
moisture method essentially measures how much energy is absorbed in O-H
bond vibrations at a range of frequencies (an overview is given in Figure 2)
and so gives an indirect assessment of how much H,O there is in the sample.
The method must be calibrated: using Moving Least Squares (MLS), Partial
Least Squares (PLS) or Artificial Neural Network (ANN) techniques allows
the construction of a relationship between the absorbance or reflectance at
a range of wavelengths and the measured moisture in each sample within
a calibration dataset of representative samples. However, experience shows
that neither the reference method nor the NIR method are ever truly stable;
seasonality, balance drift, differences in oven temperature and optical variation
all contribute to test method variability.
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Figure 1: There are many sample testing points in the production process.
This project examines part of the final product testing procedure (as circled).

2 The issue

Once a calibration has been developed, validated and released for use, it
must be continually monitored and adjustments made periodically. Typically,
standard statistical process control (SPC) charts have been used to monitor
the difference (or bias) between measurements made with the reference and
the NIR instruments. Standard SPC rules are then used to alert the user when
it appears that the bias (or variation) is out of control. Unfortunately, dairy
products tend to degrade in storage, so it can be impossible to maintain true
certified reference measurement (CRM) samples that would be the ideal basis
for such spC tools. Also, a sample might only be available for some short
time interval.
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Figure 2: NIR analysis works on the principle of subjecting the material to
be analysed to a light source (and varying the wavelengths). The molecular
properties of the material determine the amount of light reflected by or
transmitted through the material, with minor light scattering taking place
throughout the process. Depending on the material being tested or the type
of instrument used for analysis, either transmission or reflection analysis is
employed. The examination of the transmitted or reflected light reveals how
much energy was absorbed at each wavelength, producing spectral information
that can then be coupled with laboratory results to form a calibration.
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Fonterra have been monitoring the distribution of apparent differences between
NIR readings and the reference measurements (the wet-lab results). Typically,
the differences might be expected to be normally distributed with a zero
mean. However, other factors need to be accounted for, including

e (random) step changes that occur at four-day intervals (due to the staff
roster),

e variations due to ambient conditions (with 24 hour periodicity),
e seasonal variations during the dairy season,

e annual step changes (as lab equipment has annual preventative mainte-
nance).

One strategy used by Fonterra to mitigate some of these problems is to intro-
duce a more comprehensive programme of monitoring, with several reference
laboratories and multiple NIR instruments each running the same calibration.
The multiple readings should provide a better mean value (although the
process will still be subject to inherent overall method bias).

Up to now, many aspects of the monitoring scheme have been set intuitively,
including

e the frequency of monitoring (e.g., daily or weekly),
e the number of samples used in each period,
e the parameters of the control chart.

The main questions Fonterra were interested in centred around this monitoring
process:

e Can a mathematical framework be developed that can be applied to de-
termine the rules of a SPC monitoring scheme for this type of application,
that are in some sense optimal?

e What other information can be derived from such a monitoring scheme?
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The focus of the Study Group’s activities therefore became
e to investigate the monitoring process currently in use at Fonterra,

e to gain a greater understanding of control charts and statistical process
control and how they are used as part of the monitoring process at
Fonterra,

e to attempt to quantify some of the uncertainty in the NIR and “reference
method” testing,

e to incorporate this uncertainty into control charts, in order to understand
when a process that is being monitored is “out-of-control”,

e to investigate the extent to which derivative spectroscopic analysis
of the data from the NIR machines, provided by Fonterra, could be
utilised in monitoring the “health” of the NIR machines and highlight
the background role played by derivative spectroscopy in calibration
and prediction.

3 Calibration/testing

As mentioned, Fonterra use NIR spectroscopy at various points in their
production chain to detect the levels of properties in samples of their products,
for example, measuring fat, moisture and protein levels in milk powders.
IR spectroscopy involves exposing a sample to light in the IR spectrum and
recording the levels of absorbed light. Fonterra use two main types of NIR
spectroscopy, which operate on different wavelengths in the near-1R region
(in the range 0.8-1.0 um). Typically, the instrument provides a spectrum
that has been averaged over 100-200 scans, providing highly accurate results.
The spectra returned from the NIR machine (Figure 3 shows an example)
is then processed to determine measurements of the desired properties. A
brief overview of the processing step is given below, taken from Anderssen,
de Hoog & Wesley (2011). Beer’s law (Osborne et al. 1993) states that the
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Figure 3: Spectrum for 100 different skim milk powder samples.
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absorbance A depends on the path length of radiation through the sample 3
and the concentration vy in the form A = «fy, where « is the absorptivity.
With this law we form an underdetermined system of equations using a series
of spectra from a test set:

SB=p,

where S € R™ ™ is the spectral data given m different samples in a “training”
set and n individual wavelength values (with m < n), p € R™! are the
property values (such as fat or moisture) measured using some reference
method, and B is the unknown (regression) coeflicient vector to be determined.
Solving this underdetermined linear system (using an ANN or a method like
PLS) gives a value for B,; this indicates which of the k components in the
spectrum are important to determine our property p. This process is known
as calibration, and once this calibration has been performed, this (3, is used
to determine estimates of a given property from any new sample. Fonterra
already have a process in place to solve this calibration problem.

Such estimates are compared with chemistry laboratory reference analysis of
the same sample. As mentioned, these measurements are often sent to several
different laboratories, with each lab taking several measurements of the same
sample. These different measurements are then be combined to obtain an
average measurement; a typical arrangement of the averaging process is shown
schematically in Figure 4.

4 Control charts

Once calibrated, the NIR machines are then used in the manufacturing process,
and control charts are used to both detect out-of-control processes during
manufacturing (i.e., NIR instrument compared with lab results) and to monitor
machines that are out-of-control with respect to their calibrations.
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Figure 4: Sample distributions of a particular property vary according to the
measurement method.

4.1 Univariate X control charts

Univariate control charts are used to monitor statistics including the difference
between measurements and a target mean. Control limits are then set on
these charts to detect unusual samples. Figure 5 shows an example of a
control chart which plots the difference between two measurements on the
same specimen taken in one of the laboratories Fonterra use for testing.

There are two types of errors that are used to assess the monitoring process:

e Type I with probability o« — Assume process is out-of-control when it’s
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Figure 5: X control chart for errors of Lab 1 with K = 2.

in-control;

e Type II with probability 3 — Assume process is in-control when it’s
out-of-control.

If the quality characteristics follow a normal distribution, then « and 3 for
X control chart are defined by

& = 20 (—K), (1)
e

where @ is the cumulative normal distribution, n is the sample size, Ao is
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the variation Fonterra would like to detect with probability (3, and K is the
position of the control limits in units of o/y/n.

One of the most important parameters is the probability 3 which is a function
of the sample size n, variation to be controlled Ao and the position of the
control limits K. This probability should be small, as Fonterra face large
costs, in terms of both money and reputation, if they assume the process is
in-control when it is not (i.e., Fonterra would be unaware they are shipping
unsatisfactory goods to customers).

Suggestions made by the group include the following.

e Using univariate control charts (X and EWMA, see section 4.2) to monitor
the reference method, both in-lab variation and between-lab variation
(currently not done), that is, the statistics plotted in the chart represent
the differences between the two readings on the same specimen for a
given lab (in-lab variation) or the differences between the readings of the
specimen from two different labs (between-lab variation). Figures 5-7
show the X control chart for the in-lab variation of Labs 1-3 with K = 2.

e Monitoring NIR results compared to labs (modified) to assess the perfor-
mance of the individual lab. For example, plot the differences between
the mean NIR and mean readings from individual lab. The lab with the
smallest differences outperforms the other labs. Figures 8-10 represent
the differences between the mean duplicate readings and mean instru-
ment readings for each individual sample in Labs 1-3. The lab with the
minimum variation is Lab 2.

e Setting control limits for the NIR results using the sum of variances from
the NIR and lab results. This would lead to a more realistic estimate of
the true variability in the process.

Figures 5-7 indicate that the reading error for some samples is larger than
expected. These samples should be investigated to find the source of the
out-of-control signals (large difference between the two readings).
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Figure 6: X control chart for errors of Lab 2 with K = 2.

Figure 7 shows that Lab 3 has recorded the highest number (37 points outside
the 20/4/n control limits) of the out-of-control signals.

The results presented in Figures 8-10 clearly show that Lab 2 results are
the closest to the instrument’s results confirming the accuracy of Lab 2
(however, the standard deviation of Lab 2 is higher than that of Lab 3). The
above results were also confirmed by comparing the box-and-whisker plots of
difference between mean laboratory results and the mean instrument results

for the individual lab that is presented in Figure 11.
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Figure 7: X control chart for errors of Lab 3 with K = 2.

4.2 Exponentially weighted moving average control
chart

One of the major assumptions in deploying the traditional X control chart
for monitoring a process is that of normality. The probability plot of the
individual lab errors (Figure 12) indicates that none of the labs have errors
that follow a normal distribution. Since the corresponding p-value for Labs 1-
3 is less than 5%, we claim with 95% confidence that Labs 1-3 do not have
normally distributed errors. However, the mean error for all three labs is very
close to zero.

One of the most effective alternatives to the X chart is the Exponentially
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Figure 8: Control chart for the difference between mean Laboratory 1 results
and the mean instrument results. The mean is forced to be zero and the
standard deviation has been calculated by the software.

Weighted Moving Average (EWMA) chart. This chart was introduced by
Worthham & Ringer (1971). This charting method was proposed for applica-
tions to the process such as chemical industries, financial and management
control systems, particularly when the sample size is one. The chart is effective
for detecting small to moderate shifts (< 1.50/4/n) and is very insensitive to
normality assumptions; therefore it is an ideal chart for individual observa-
tions when data do not follow a normal distribution. One of the aims of this
study is to monitor the error per sample for an individual lab. The fact that
errors do not follow a normal distribution and the sample size for the plotted
statistics is one (for an individual sample we monitor the difference between
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Figure 9: Control chart for the difference between mean Laboratory 2 results
and the mean instrument results. The mean is forced to be zero and the
standard deviation has been calculated by the software.

the two readings) suggests that the EWMA chart is superior to the traditional
X chart for monitoring the errors. The chart is used to control: an average
(of a sample), the error of an individual sample, a ratio or a proportion (of
defects in the sample).

In this chart, the older the observation, the less weight it conveys. The plotted
statistics are exponentially weighted moving average defined by

zi=Ai+ (1 =A)zi1, 0<ALT, zo=yo,

where A is the weight constant and the starting value py (required with first



4  Control charts M63

Control chart for difference between mean lab 2 and meaninstrument

0,30 4

+25L=0.282

0.25 1

.00 +

0.251 251 =0,282

-0.50 -

Individual Yalue

-0.75 4

_lll:":I- T T T T 1I

1 = 53 /A 105 131 157 183 209 235 261
Observation

Figure 10: Control chart for the difference between mean Laboratory 3 results
and the mean instrument results. The mean is forced to be zero and the
standard deviation has been calculated by the software.

sample at 1 = 1) is the process target error (in this case zero). The plotted
statistic z; is a weighted average of all the previous sample statistics, or

i—1
zz=A)Y (1— A)jxi_]- + (1 —=A)z,.
j=0
The variance of z; is defined by

A i
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Figure 11: Box-and-whisker plot for the difference between the mean labora-
tory and the mean instrument readings. The joining line between the boxes
indicates the mean for each lab.

where o is the process standard deviation. When 1i increases, (1 —A)? — 0,

therefore \
o2 — o2
=%\ 223 )
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Figure 12: Probability plot of the reading errors for each individual Lab.

The control limits for this chart are as follows:

A :
= — 1 —(1=A)%
UCL Ho-i-LG\/z_}\[ (1—A)21, (3)
CENTER LINE = [, (4)
A .
=po—Loy/z—=[1—(1—=A)%4].
LCL = Mo G\/z — [1—(1—A)2 (5)

If it is desired to monitor a small error, then the weight parameter should
have a value between 0.1-0.2 (Montgomery 2005). All the analyse in this
article are carried out using A = 0.2 and L = 2 (the position of the control
limits on the chart).



4  Control charts M66

4.2.1 Using the EWMA chart for one-step ahead forecasting of
the process mean

We discussed the EWMA primarily as a statistical process control tool; however,
the EWMA provides a one-step ahead forecast of the process mean (Mont-
gomery 2005). That is, z; is a forecast value of the process mean p at time
t + 1. Thus, if the forecast of the mean is different from the required target
by a critical amount, then either the operator or some electro-mechanical
control system can make the necessary process adjustment. One suggestion
for Fonterra is to monitor the labs’ errors by deploying the EWMA and use its
forecasting ability to decide if the process adjustment is required. The EWMA
for Lab 1 errors is given in Figure 13. Figure 13 shows that samples 15, 16,
17, 18, 40, 41 have error much larger than expected in this process. The
alternative interpretation (if these were plotted on line) is the mean error for
sample 42 (one-step ahead forecast) would be high unless adjustment action
is taken.

Also observe that the number of out-of-control errors on the EWMA chart is
larger than on the X chart (Figure 5). This is due to the X chart detecting
errors greater than 1.50/+/1; however, the EWMA with A = 0.2 is optimal to
detect errors less than 0.50//m.

4.2.2 Comparisons of the mean errors for the three labs using
ANOVA

Analyses of Variance (ANOVA) together with Tukey’s test are performed
to compare the performance of the three labs. The following ANOVA and
Tukey’s test on the errors of the three labs with the p-value of 0.074, indicate
that at 95% confidence level the mean errors for the individual labs are not
significantly different. The results also show that the mean errors for Lab 3 are
much closer to zero than the other two labs. However, the smallest standard
deviation was recorded for Lab 2. This indicates that the error readings in
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Figure 13: EWMA chart for Lab 1 error.

Lab 2 over all the 264 samples are more uniform than the error readings of
the other two labs.

4.3 Multivariate control charts

Multivariate process control techniques were established by Hotelling (1947)
in his pioneering article. He introduced the problem of correlation between
the quality characteristics of a process and came up with the well-known
T? statistic to identify whether the whole process is out-of-control. The
Hotelling’s T? statistic is the optimal test statistic for detecting a general
shift in the process mean vector for an individual multivariate observation.
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However, the technique has several practical drawbacks. One of the most
important ones is that when the T? statistic indicates that a process is out-of-
control, it does not provide information on which variable or set of variables
is out-of-control. Moreover, it is difficult to distinguish location shifts from
scale shifts since the T? statistic is sensitive to both types of process changes.

The difficulty of interpreting an out-of-control signal on a multivariate control
chart has been discussed extensively by Alt (1985), Doganaksoy et al. (1991),
Murphy (1987), Pignatiello & Runger (1990), Lowry et al. (1992), Hunter
(1986), amongst others. When two or more correlated variables are monitored,
use of a multivariate chart may cause signals at opposing times to the signals
given by a set of univariate charts on the individual variables. This is because
the control region for a multivariate chart on correlated variables is represented
by a tilted elliptical region as opposed to the non-tilted square region obtained
by the use of separate charts. The use of separate charts does not allow for the
information concerning the correlation of the variables to be utilized. However,
the combination of using a multivariate control chart for signalling purposes
and then using separate charts for diagnostic purposes is often effective.

To simultaneously monitor p correlated quality characteristics, the multivari-
ate EWMA (MEWMA) chart is also be applied. The MEWMA was introduced
by Lowry et al. (1992) and is a logical extension of the univariate MEWMA.
The statistic calculated in the MEWMA is defined as

Zi=M+(1—-A)Zi,, Zy=0,

where A = diag(A1,Az,...,Ay), 0 < Ay < 1 and I is the identity matrix. If
there is no a priori reason to weight past observations differently for the
P quality characteristics, then Ay = A; = --- = A,,. The plotted statistic on

the control chart is
T12 = Zi/(zzi)i]zi 9

and the covariance matrix is
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where X is the process variance. The upper control limit in this article is
produced by the statistical package Minitab 16 based on Average Run Length
(ARL) = 200 and number of quality characteristics to be examined. Analogous
to the situation in the univariate case, the MEWMA chart is equivalent to
T? (multivariate X) chart if A = L.

Multivariate charts examine all of the correlated relevant quality character-
istics such as fat, moisture and protein or the measurements from several
labs simultaneously. Figure 14 represents the MEWMA chart for the protein
measurements, where for each specimen the sample size is two (one reading
from each test in each individual lab) and data from individual labs is treated
as different characteristics. Therefore, we have 264 samples of size two from
three different labs (p = 3). Here the MEWMA chart is used to detect a num-
ber of problems, including transcription errors and out-of-sequence samples
produced by individual labs.

The MEWMA in Figure 14 is capable of monitoring all the readings from
all three labs simultaneously and identifies which samples are out-of-control
and which test in which lab was the cause of the out-of-control signals. The
target mean vector and the covariance matrix are estimated based on all the
recorded data.

It is a common practice in statistical quality control to use the individual
charts to identify the characteristic(s) responsible for the multivariate out-of-
control signals. For this reason, the univariate EWMA chart is imposed on
each individual quality characteristic by the statistical package Minitab 16.
The sources of the out-of-control signal together with their corresponding
p-values are presented in Table 3.

The results in Table 3, for example, indicate that the reason for sample 249
being out-of-control is the high first reading of Lab 1 and second reading of
Lab 2. Similarly for sample 216 the out-of-control signal was caused by the
first reading from Lab 1 and the second reading from Lab 3.

Furthermore, using the one-step ahead forecasting ability of the MEWMA, the
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Figure 14: MEWMA chart for the protein measurements of the three labs.

above results warn the producer that the expected multivariate mean vector
for, say, sample 250 would be high and the cause would be Lab 1 and Lab 2.

5 Derivative spectroscopy (an aside)

although the focus of this manuscript has been the monitoring of the rapid NIR
assessment of product compositions using control charts in terms of assessing
instrument health, a key monitoring role is played by derivative spectroscopy
because second derivatives of the spectra removes the linear trends due to
the scatter effect. Derivative spectroscopy also plays a key background role
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Table 3: Test results for T? chart, greater than UcCL, of Labl a, ...Lab3 b
Point Variable p-value
30 Lab 1b  0.0000
54 Lab 3a  0.0000
80 Lab 1b  0.0000

Lab 2a  0.0047
Lab 3b  0.0195
216 Lab 1a  0.0001
Lab 3b  0.0002
241 Lab 1a  0.0007
Lab 3a  0.0003
249 Lab 1a  0.0002
Lab 2b  0.0355
254 Lab 1a  0.0000
Lab 2a  0.0012
255 Lab 1a  0.0000
Lab 2a  0.0134
Lab 2b  0.0146
256 Lab 1a  0.0000
Lab 2a  0.0000

related to the calibration and prediction of product composition.

Identifying the peaks in spectral data that correspond to key components
in a biological material (e.g., milk powder, wheat) can be quite difficult.
However, the spectral data shown in Figure 3 can be enhanced by a variety
of methods, in order to highlight the locations of peaks that correspond to
certain components more clearly; several techniques can be applied to give
this enhancement, including derivative spectroscopy (Osborne et al. 1993,
Anderssen, Hegland & Wesley 2011). The enhanced spectra can then be
used to form the matrix S, with the hope of increasing the accuracy of the
calibration step, and hence the measured property values. A brief overview is
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Figure 15: Skim milk powder spectrum for different 100 samples, with the
first and second derivatives shown.

given below, taken from Anderssen, de Hoog & Wesley (2011), Anderssen,
Hegland & Wesley (2011), Anderssen et al. (1998). A simple example is
constructed by considering a spectrum

f(x) = sin(x) + € cos(wx),

where € and w are constants. By taking successive derivatives of this function,
any frequency component that might be hidden (given a large w and small €),
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becomes more prominent, as

d*f . 4
= sin(x) + ew"” cos(wx).

Taking the first derivative of the spectrum removes any linear trends in the
data, which may often be caused by measurement errors. Other advantages
associated with derivative spectroscopy are outlined by Anderssen, Hegland

& Wesley (2011).

Derivative spectroscopy clearly relies on the ability to differentiate a spectrum
numerically. While in general numerical differentiation is potentially unstable,
the information from an NIR machine is generated from an average of about
200 scans over very small wavelength differences and is therefore very smooth.
Nevertheless, suitable smoothing techniques are applied to ensure accurate
and stable estimates of derivatives of the data. A moving average technique

(Anderssen et al. 1998) was used to differentiate stably. For example, the first
A1)
f

derivative f; * at a node point x; is

]
iV =3 wif"ij,
j=1

where wj are the weights used for each derivative (which must sum to unity),
and the derivative values are given by a standard difference formula, for

example,
V) = St
2jh

where h = xj 1 —x; . This algorithm takes linear combinations of ] nth deriva-
tives fi(n) formed at the node point x;. For each of the | derivatives, the values
are computed by only using every Jth node point. The method effectively
involves computing a series of derivatives using different grid spacing, and
taking some weighted average to give a single, stable derivative at the node
point Xx;.
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Figure 16: Skim milk powder spectrum for six samples, each scanned twice,
before a lamp failure.

Derivative spectroscopy was performed in this manner, using the example
spectrum shown in Figure 3, and the results are shown in Figure 15 (the
original spectra are also plotted). Figure 15 shows that the peaks in the
data are far more visible in the plots of the first and second derivative, when
compared with the original spectrum. The peak around 1445 nm for example,
represents the levels of moisture in the samples. The enhanced peaks from the
derivative spectroscopy are used to improve the accuracy of the calibrations
mentioned previously. Fonterra is currently using first derivative data during
this process.
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Figure 17: Skim milk powder spectrum for six samples, each scanned twice,
after a lamp failure.

The health of the IR instruments is also important, as the lamps (which are
the source of the NIR light) periodically fail, and the question was raised
at the Study Group about the difference a failing lamp might make in the
measured spectrum. Fonterra provided data, plotted in Figures 16 and 17,
which shows the spectrum from six samples, each scanned twice, before a lamp
failure, and after the lamp failed and was replaced, respectively. Also plotted
are the values of the first and second derivatives, calculated as described
above. There is a small difference between the spectrum before and after
the lamp failure. However, this difference is approximately the same size as
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the difference between the duplicate scans taken of the same sample, both
before and after the lamp failure. This size implies that variations in the
sample between scans, caused by effects like different packing in the sample
dish between scans, are more important in terms of the variability seen in
the spectrum than a failing lamp reading an incorrect spectrum.

The difference between the mean spectra (the average of duplicate scans) and
the individual spectra observed for the six samples is plotted in Figure 18. The
differences are roughly centred around zero; the maximum relative magnitude
of the difference as approximately 2.8% in the absorbance detected. This
gives a rough measure of the maximum difference that can be expected in
the spectrum, given the worst-case scenario of a failing lamp, combined with
variation in the testing protocols.

6 Recommendations and conclusions

The outcomes of the above investigations resulted in the Study Group making
the following recommendations:

e Use control charts to monitor the reference method, with respect to
both in-lab variation and between-lab variation (currently not done).

e Monitor NIR results compared with those from the labs (modified).

e Set the control limits in the control charts for the NIR results using the
sum of variances from the NIR and lab results.

e Use a Type II error to determine the sample size (n) that should be
measured during the NIR machine monitoring process and the position
of the control limits in the control charts.

e Use Multivariate MEWMA charts to monitor the performances of all the
three labs simultaneously in terms of reading errors and in the lab fault
diagnostics task.
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Figure 18: Skim milk powder spectrum for six samples, each scanned twice,
after a lamp failure.

e Use Multivariate EWMA charts to monitor the performance of the NIR
machines over the variety of the correlated product characteristics
simultaneously.

e Use the one-step ahead forecasting ability of the univariate EWMA
and Multivariate MEWMA charts to monitor the expected shift in the
measurements reading for the next sample and the necessity for the
machine adjustment.

e Investigate using quality assurance switching rules, based on the number
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of consecutive accepted and rejected lots to switch between intensive
and reduced testing.

e Use the mean instead of the median to monitor the differences between
NIR and lab measurements, and also while comparing a particular
instrument to mean instrument readings.

e Standardise the standard deviation calculation in control charts based
on all the available historical data.

e Do not tweak the bias in machines based on monitoring.

e Start daily NIR testing for each machine with a check-cell; this provides
a stable test of the machine’s “health” before beginning sample testing
for the day.
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