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Simulation of vortex shedding flows using
high-order fractional step methods
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Abstract

Unsteady flow past a square cylinder is simulated using a frac-
tional step method to advance the Navier-Stokes equations in time.
The fractional step method is a single step method whereby the mo-
mentum equations are solved using an explicit/implicit scheme and an
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approximate pressure field to yield an estimate of the velocity. This
velocity is then projected onto a divergence free field using a pressure
correction obtained by the solution of a Poisson pressure correction
equation. The integration then proceeds to the next time step.

Results were obtained using a Crank-Nicolson scheme and hybrid
second and third order Adams-Bashforth/Adams-Moulton schemes
and second order in time behaviour is verified for velocities for a devel-
oped flow over a square cylinder. Results will be presented comparing
the accuracy and efficiency of these schemes with unsteady flows of
this type, as well as detailing some of the pitfalls that can be encoun-
tered with this approach.
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1 Introduction

The flow of an isothermal fluid is governed by equations for conservation of
mass and conservation of momentum (the Navier-Stokes equations). When
these equations are solved for an incompressible fluid, pressure provides cou-
pling between the momentum and mass conservation equations. This coupled
system can be solved iteratively using methods such as the simple proce-
dure (Patankar [9]) or by a non-iterative method such as the fractional step
method.

The fractional step method was first suggested by Harlow and Welch [3]
and Chorin [4]. The scheme became popular after Kim and Moin [5] modified
it for finite volumes on a staggered grid. Since then a number of versions of
the scheme have been suggested. Of these, the pressure-correction method
(Van Kan [6] and Bell and Colella [1]) was found to be the fastest of the
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methods tested by Armfield and Street [10] and is the method used here.
Gresho [8] has shown analytically that this method is second order in time.

In this paper, the behaviour of a number of second and third order
schemes for the time integration of the Navier-Stokes equations using the
fractional step method has been investigated. The order of accuracy of the
schemes for the momentum equations is demonstrated by integration of these
equations alone for a driven cavity flow. The addition of a pressure correction
step necessary to ensure a divergence free velocity field is shown to limit the
accuracy of the overall method to second order.

Results have also been obtained for fully developed vortex-shedding flow
over a square cylinder showing that second order accuracy is retained with
all schemes for this case. Finally, the accuracy, stability and efficiency of the
three schemes are compared. All results presented were obtained using the
puffin code (Particles IN Unsteady Fluid Flow).

2 Method

The Navier-Stokes equations for an incompressible fluid are written in the
following form:

vt + (v · ∇)v = −∇P +
1

Re
∇2v, (1)

∇ · v = 0, (2)
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where v is the velocity, P the pressure and Re the Reynolds number.

2.1 Spatial Discretisation

These equations are discretised in space using a finite volume formulation on
a non-uniform, staggered, Cartesian grid. Derivatives are calculated using a
second-order accurate central difference scheme.

An advantage of the central difference scheme over non-centred schemes
is that it is relatively free of numerical dissipation. While this improves
the accuracy of the scheme, it can also lead to non-physical oscillations if a
grid of insufficient refinement is used. Patankar [9] found that the central
difference scheme will give realistic solutions as long as the cell Peclet number,
Pe = v∆h

Γ
, is kept less than two (where ∆h is the grid cell dimension and Γ

is a kinematic diffusion coefficient).

From the point of view of testing the time accuracy of a scheme, we
found that it is possible to obtain good results with a Pe > 2, as long as the
oscillations were significantly smaller than other structures in the flow.

2.2 Time Advancement of Momentum Equations

In the pressure-correction method, the momentum equations are first solved
using the pressure gradient from the previous time step to give an approx-
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imate solution, v∗. We have developed a number of schemes for the inte-
gration of the momentum equations in time. These include: an iterative
Crank-Nicolson scheme and non-iterative, second and third order hybrid ex-
plicit/implicit schemes. In the hybrid schemes, Adams-Bashforth methods
are used for the advective terms and Adams-Moulton methods for the diffu-
sive terms. These schemes will be referred to as cn, ab2/am2 and ab3/am3
respectively.

2.2.1 Crank-Nicolson Scheme

The cn scheme can be written as:

vn+1 − vn

∆t
+

[
1

2
H(vn+1) +

1

2
H(vn)

]
= −Gpn +

1

Re

[
1

2
L(vn+1) +

1

2
L(vn)

]
,

(3)

where H is the discrete advection operator, G the discrete gradient and L
the discrete Laplacian or diffusion operator.

When viscosity is constant, the diffusion operator is not dependent on
time. As a result, solution of a pure diffusion equation such as the heat
equation using the cn scheme does not require iteration to be second-order
accurate. The non-linearity of the advection operator, however, makes it nec-
essary to iterate through the momentum equations if second order accuracy
is to be achieved.
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2.2.2 Hybrid Adams Schemes

This requirement of iterating can be avoided by using a hybrid explicit/impli-
cit scheme. Advection terms are treated explicitly using an Adams-Bashforth
method while diffusion terms are treated implicitly using an Adams-Moulton
method. The second and third order hybrid schemes, ab2/am2 and also
ab3/am3, are written as follows:

vn+1 − vn

∆t
+

[
3

2
H(vn) − 1

2
H(vn−1)

]
= −Gpn +

1

Re

[
1

2
L(vn+1) +

1

2
L(vn)

]
,

(4)

vn+1 − vn

∆t
+

[
23

12
H(vn) − 16

12
H(vn−1) +

5

12
H(vn−2)

]

= −Gpn +
1

Re

[
5

12
L(vn+1) +

8

12
L(vn) − 1

12
L(vn−1)

]
. (5)

Because the non-linear terms are calculated at previous time steps (where
all the necessary information is known) no iteration is required to achieve the
“advertised” accuracy of the scheme.

The resulting matrix equation is solved using an adi solver with the
Thomas algorithm used to solve the tridiagonal systems.

A fully explicit scheme for both advection and diffusion terms has the
advantage that no matrix inversion is required, however, the stability crite-
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rion for explicit treatment of diffusion terms is considerably more stringent
than that for the advection terms. For diffusion terms the maximum useable
time step is proportional to the characteristic diffusion time, (∆h)2

Γ
(where

∆h is the minimum grid cell dimension and Γ is a kinematic diffusion co-
efficient). For advection terms the maximum time step is proportional to
the characteristic convection time, ∆h

v
. This condition is usually described

in terms of the Courant number, C = v∆t
∆h

. The limitation on the time-step
due to the diffusion terms makes a fully explicit scheme impractical for most
applications.

A disadvantage of Adams methods is that they require special treatment
for the initial steps where no information about previous time-steps is avail-
able. We found that starting with a lower order method did not reduce the
long-term accuracy of the scheme. The best results, however, were obtained
by using cn for the first step.

An alternative approach which avoids this problem is to use a scheme such
as Runge-Kutta in which each time step is divided into a series of substeps.
This advantage comes at the expense of repeated computation of all the
terms at each substep.

2.2.3 Boundary conditions

The boundary conditions for the driven cavity flow are solid boundaries with
a no-slip condition. The velocity of the solid boundary may be zero or non-
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zero. Rather than using a phantom node, the tangential velocity node is
placed on the solid boundary surface. As a result, the boundary velocity is
constant and always exact.

In addition, the external flow past a square cylinder also requires inlet,
outlet and periodic boundary conditions. The inlet boundary condition is
applied by setting the normal velocity on the boundary to a constant value
and using phantom nodes for the tangential velocity components. At the
outlet boundary a convective outlet boundary condition is used,

∂v

∂t
+ Vb

∂v

∂n
= 0 , (6)

where Vb is the bulk velocity. This boundary condition allows convection of
structures out of the domain and avoids problems with reflection of pressure
waves (Pauley et al. [7]).

At periodic boundaries all terms are treated explicitly. This keeps the
matrices for each line tridiagonal. A modification of the Thomas algorithm
for a tridiagonal matrix with periodic elements is approximately twice as
expensive to solve as the standard form. For the present case, in which the
cells close to the periodic boundaries are approximately an order of magni-
tude larger (in the boundary normal direction) than the smallest cells and
velocity gradients at the boundary are small, explicit treatment of diffusion
flux at the boundary was found not to cause stability problems.
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2.2.4 Pressure correction

After the approximate solution for the velocity field, v∗, has been obtained by
integration of the momentum equations using one of the schemes above, mass
conservation is enforced through a pressure correction step. The approximate
velocity field is projected onto a subspace of divergence free velocity fields.
The projection is achieved by solving a Poisson equation for the pressure
correction, φ, in which the source term is the divergence of velocity in each
cell:

Lφ =
1

∆t
Dv∗. (7)

The pressure correction is used to correct the velocity field,

vn+1 = v∗ − ∆tGφ, (8)

and the pressure field,

pn+1 = pn + φ. (9)

It has been shown (Shah [2]) that the Poisson equation for the pressure-
correction method is independent of boundary values of v∗ and φ. As a result,
the use of intermediate values of velocity, v∗, at the boundaries does not affect
the order of accuracy of the overall scheme as it did with earlier fractional
step methods.
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It also enables us to set special boundary conditions on the Poisson equa-
tion to drive the net mass flux across a boundary to a desired (zero or non-
zero) value. Reverting to dimensional form, for a desired net mass flux across
the boundary, ṁb, the following boundary condition is used,

δφ

δn
=

−(ṁb −
∑

(%v∗δA))

δtAb
(10)

where δA is the boundary normal area of each cell and Ab is the total area
of the boundary.

This boundary condition sets the normal gradient of the pressure cor-
rection across the boundary to a value which gives the velocity correction
required to achieve the correct net mass flux. This boundary condition was
developed to enable us to apply periodic boundary conditions with a non-zero
net mass-flux. It also accelerates the solution of the Poisson equation.

The Poisson equation is solved using an adi solver. The divergence of
the corrected velocity field is checked and the correction procedure repeated
until the required tolerance is achieved.

3 Results

Results have been obtained for the three schemes, cn, ab2/am2 & ab3/am3
using the following test cases:
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• start-up flow in a driven-cavity without the pressure correction step;

• start-up flow in a driven-cavity with the pressure correction step;

• developed flow over a square cylinder.

Errors were evaluated using an L2 norm of the difference between the test
solution and a benchmark solution obtained with a Courant number four
times less than the smallest Courant number used for the tests.

3.1 Driven Cavity

Start-up flow in a driven cavity was integrated at a Reynolds number of 400
based on lid velocity and cavity height. Boundary conditions were stationary
solid boundaries at the base and sides of the cavity and a solid boundary
with non-zero tangential velocity for the lid. A 32 × 32 uniform grid was
used. Integration times, t, are non-dimensionalised by the lid velocity and
the cavity height.

3.1.1 Case 1: Integration without pressure correction

The momentum equations alone were integrated over t = 0 to 0.05. The
benchmark run was performed with a time step corresponding to a Courant



3 Results C868

number C = 0.00125. Tests were performed with time steps ranging from C =
0.005 to 0.04. For this test, one of the side walls was also given a tangential
velocity in order to obtain a non-zero field for both velocity components.

Figure 1 shows errors of the three schemes for the horizontal velocity, u.
(Results for v were identical.) These results show that the solution of the
momentum equations by themselves is second order accurate with the cn
and ab2/am2 schemes and third order accurate with the ab3/am3 scheme.

3.1.2 Case 2: Integration with pressure correction

The momentum equations were integrated and the pressure correction ap-
plied over t = 0 to 0.5. The benchmark run was performed with a time step
corresponding to a Courant number C = 0.0125. Tests were performed with
time steps ranging from C = 0.05 to 0.4.

Figure 2 shows errors of the three schemes for two velocity components,
u and v. With the pressure correction applied, the second order schemes
remain second order but the accuracy of ab3/am3 is reduced from third to
second order. This agrees with the theoretical findings of Gresho [8] that the
pressure correction method is, at best, second order.
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Figure 1: Velocity errors for driven cavity - no pressure correction: [+ cn,
* ab2/am2, o ab3/am3, lines ... 1st order, 2nd order, . 3rd order]
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Figure 2: Velocity errors for driven cavity - with pressure correction: [+
cn, * ab2/am2, o ab3/am3, lines ... 1st order, 2nd order]
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3.2 Square Cylinder

Flow over a square cylinder at a Reynolds number of 50 was integrated on
a non-uniform 72 × 216 grid. The cylinder of width, 1, was placed in a
domain of spatial size 9 × 17. The grid was finest close to the cylinder with
a resolution of 24 cells along each face. From here the grid was expanded in
both directions using a geometric series. The grid was designed with the aim
of keeping the cell Peclet number Pe ∼ 2 throughout as much of the domain
as possible. The maximum value is Pe ∼ 8 at the outlet.

In the streamwise direction, inlet and a convective outlet boundaries were
used while periodic boundaries were used in the cross-stream direction. Inte-
gration times, t, are non-dimensionalised by the bulk velocity and the cylinder
width.

The initial conditions were velocity and pressure fields for developed flow.
These fields were obtained by integrating the flow from an initial divergence
free velocity field at t = 0 to developed flow at t = 40. A plot of iso-vorticity
lines for this field is shown in Figure 3. The effect of the higher Peclet number
close to the outlet is seen in the small wiggles in the solution in this area.
This did not affect the time accuracy results.

Figure 4 shows errors of the three schemes for two velocity components, u
and v. They show all the schemes retain second order accuracy for a vortex-
shedding flow. The error of ab3/am3 and cn is seen to be approximately
half that of ab2/am2 for u-velocity. Errors were similar with all schemes for
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Figure 3: Flow over a square cylinder - vorticity



4 Conclusions C873

v-velocity.

The stability limit for all schemes was found experimentally to be C ∼ 1.0.

4 Conclusions

Three high order schemes for time-integration of the unsteady Navier-Stokes
equations using a fractional step method have been investigated. It has been
demonstrated that the third order hybrid scheme, is reduced to second order
when used in combination with the fractional step method. This is because
the fractional step method is first order accurate for pressure.

Second order accuracy has been obtained for developed vortex-shedding
flow past a square cylinder with all schemes. ab3/am3 has been demon-
strated to be the most accurate scheme for this flow, though still second
order.

The hybrid schemes are of similar accuracy to the Crank-Nicolson scheme
and more than twice as fast in the momentum equation integration step. The
errors of the third order hybrid scheme are similar to the second order scheme
for this flow. The stability limit for all schemes was C ∼ 1.0.

The additional computational costs of the third order scheme are very
small, however the increase in storage requirements are considerable.
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Figure 4: Velocity errors for square cylinder - with pressure correction: [+
cn, * ab2/am2, o ab3/am3, lines ... 1st order, 2nd order]
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We conclude that the second order hybrid scheme offers the best perfor-
mance for problems of this type.
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