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On discrete GB-splines
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Abstract

Explicit formulae and recurrence relations are obtained for dis-
crete generalized b-splines (discrete gb-splines for short). Properties
of discrete gb-splines and their series are studied. It is shown that the
series of discrete gb-splines is a variation diminishing function and the
systems of discrete gb-splines are weak Chebyshev systems.
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1 Introduction

The tools of generalized splines and gb-splines are widely used in solving
problems of shape-preserving approximation (e.g., see [7]). Recently, in [1]
a difference method for constructing shape-preserving hyperbolic tension
splines as solutions of multipoint boundary value problems was developed.
Such an approach permits us to avoid the computation of hyperbolic func-
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tions and has substantial other advantages. However, the extension of a mesh
solution will be a discrete hyperbolic tension spline.

The contents of this paper is as follows. In Section 2 we give a definition
of a discrete generalized spline. Next, we construct a minimum length local
support basis (whose elements are denoted as discrete gb-splines) of the new
spline; see Section 3. Properties of gb-splines are discussed in Section 4,
while the local approximation by discrete gb-splines of a given continuous
function from its samples is considered in Section 5. In Section 6 we derive
recurrence formulae for calculations with discrete gb-splines. The properties
of gb-spline series are summarized in Section 7.

2 Discrete generalized splines

Let a partition ∆ : a = x0 < x1 < · · · < xN = b of the interval [a, b] be given.
We will denote by SDG

4 the space of continuous functions whose restriction
to a subinterval [xi, xi+1], i = 0, . . . , N − 1 is spanned by the system of
four linearly independent functions {1, x, Φi, Ψi}. In addition, we assume

that each function in SDG
4 is smooth in the sense that for given τ

Lj

i > 0

and τ
Rj

i > 0, j = i − 1, i, the values of its first and second central divided
differences with respect to the points xi − τ

Li−1

i , xi, xi + τ
Ri−1

i and xi − τLi
i ,

xi, xi + τRi
i coincide.
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Given a continuous function S we introduce the difference operators

D1S(x) ≡ Di,1S(x) = (λRi
i S[x − τLi

i , x] + λLi
i S[x, x + τRi

i ])(1 − t)

+(λRi
i+1S[x − τLi

i+1, x] + λLi
i+1S[x, x + τRi

i+1])t,

D2S(x) ≡ Di,2S(x) = 2S[x − τLi
i , x, x + τRi

i ](1 − t)

+2S[x − τLi
i+1, x, x + τRi

i+1]t,

x ∈ [xi, xi+1), i = 0, . . . , N − 1,

where λRi
j = 1 − λLi

j = τRi
j /(τLi

j + τRi
j ), j = i, i + 1 and t = (x − xi)/hi,

hi = xi+1 − xi. The square parentheses denote the usual first and second
divided differences of the function S with respect to the argument values
xj − τLi

j , xj , xj + τRi
j , j = i, i + 1.

Definition 1 A discrete generalized spline is a function S ∈ SDG
4 such that

1. for any x ∈ [xi, xi+1], i = 0, . . . , N − 1

S(x) ≡ Si(x) = [S(xi) − Φi(xi)Mi](1 − t)

+ [S(xi+1) − Ψi(xi+1)Mi+1]t

+ Φi(x)Mi + Ψi(x)Mi+1, (1)

where Mj = Di,2Si(xj), j = i, i + 1, and the functions Φi and Ψi are
subject to the constraints

Φi(xi+1 − τLi
i+1) = Φi(xi+1) = Φi(xi+1 + τRi

i+1) = 0,

Ψi(xi − τLi
i ) = Ψi(xi) = Ψi(xi + τRi

i ) = 0, (2)

Di,2Φi(xi) = 1, Di,2Ψi(xi+1) = 1;
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2. S satisfies the following smoothness conditions

Si−1(xi) = Si(xi),

Di−1,1Si−1(xi) = Di,1Si(xi), i = 1, . . . , N − 1. (3)

Di−1,2Si−1(xi) = Di,2Si(xi),

This definition generalizes the notion of a discrete polynomial spline in [9]
and of a generalized spline in [5, 6]. The latter one can be obtained by setting

τLi
j = τRi

j = 0, j = i, i + 1 for all i. If τ
Lj

i = τL
i and τ

Rj

i = τR
i , j = i − 1, i

then according to smoothness conditions (3) the values of the functions Si−1

and Si at the three consecutive points xi − τL
i , xi, xi + τR

i coincide. Setting
τLi
j = τRi

j = τi, j = i, i + 1 we obtain D1,iS(x) = S[x − τi, x + τi] and
D2,iS(x) = S[x − τi, x, x + τi], which is the case discussed in [1].

The functions Φi and Ψi depend on the tension parameters which influ-
ence the behaviour of S fundamentally. We call them the defining functions.
In practice one takes Φi(x) = Φi(pi, x), Ψi(x) = Ψi(qi, x), 0 ≤ pi, qi < ∞.
In the limiting case when pi, qi → ∞ we require that limpi→∞ Φi(pi, x) = 0,
x ∈ (xi, xi+1] and limqi→∞ Ψi(qi, x) = 0, x ∈ [xi, xi+1) so that the function S
in formula (1) turns into a linear function. Additionally, we require that if

pi = qi = 0 for all i, then we get a discrete cubic spline. If τ
Lj

i = τ
Rj

i = τi,
j = i − 1, i for all i then this spline coincides with a discrete cubic spline
of [10]. The case τi = τ for all i was considered in [8].
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3 Construction of discrete GB-splines

Let us construct a basis for the space of discrete generalized splines SDG
4

by using functions which have local supports of minimum length. Since
dim(SDG

4 ) = 4N − 3(N − 1) = N + 3 we extend the grid ∆ by adding the
points xj , j = −3,−2,−1, N+1, N+2, N+3, such that x−3 < x−2 < x−1 < a,
b < xN+1 < xN+2 < xN+3.

We demand that the discrete gb-splines Bi, i = −3, . . . , N − 1 have the
properties

Bi(x) > 0, x ∈ (xi + τRi
i , xi+4 − τ

Li+3

i+4 ), (4)

Bi(x) ≡ 0, x /∈ (xi, xi+4),
N−1∑
j=−3

Bj(x) ≡ 1, x ∈ [a, b]. (5)

According to (1), on the interval [xj , xj+1], j = i, . . . , i + 3, the discrete
gb-spline Bi has the form

Bi(x) ≡ Bi,j(x) = Pi,j(x) + Φj(x)Mj,Bi
+ Ψj(x)Mj+1,Bi

, (6)

where Pi,j is a polynomial of the first degree and Ml,Bi
= Dj,2Bi(xl), l =

j, j + 1 are constants to be determined. The smoothness conditions (3)
together with the constraints (2) give the following relations

Pi,j(xj) = Pi,j−1(xj) + zjMj,Bi
,

Dj,1Pi,j(xj) = Dj−1,1Pi,j−1(xj) + cj−1,2Mj,Bi
,
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where

zj ≡ zj(xj) = Ψj−1(xj) − Φj(xj),

cj−1,2 = Dj−1,1Ψj−1(xj) − Dj,1Φj(xj).

Thus in (6)

Pi,j(x) = Pi,j−1(x) + [zj + cj−1,2(x − xj)]Mj,Bi
. (7)

By repeated use of this formula we get

Pi,j(x) =
j∑

l=i+1

[zl + cl−1,2(x − xl)]Ml,Bi
= −

i+3∑
l=j+1

[zl + cl−1,2(x − xl)]Ml,Bi
.

As Bi vanishes outside the interval (xi, xi+4), we have from (7) that Pi,j ≡ 0
for j = i, i + 3. In particular, the following identity is valid

i+3∑
j=i+1

[zj + cj−1,2(x − xj)]Mj,Bi
≡ 0,

from which one obtains the equalities

i+3∑
j=i+1

cj−1,2y
r
jMj,Bi

= 0, r = 0, 1, yj = xj − zj

cj−1,2

. (8)
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Thus the formula for the discrete gb-spline Bi takes the form

Bi(x) =




Ψi(x)Mi+1,Bi
, x ∈ [xi, xi+1),

(x − yi+1)ci,2Mi+1,Bi
+ Φi+1(x)Mi+1,Bi

+ Ψi+1(x)Mi+2,Bi
, x ∈ [xi+1, xi+2),

(yi+3 − x)ci+2,2Mi+3,Bi
+ Φi+2(x)Mi+2,Bi

+ Ψi+2(x)Mi+3,Bi
, x ∈ [xi+2, xi+3),

Φi+3(x)Mi+3,Bi
, x ∈ [xi+3, xi+4),

0, otherwise.

(9)

Substituting formula (9) into the normalization condition (5) written for
x ∈ [xi, xi+1], we obtain

i∑
j=i−3

Bj(x) = Φi(x)
i−1∑

j=i−3

Mi,Bj
+ Ψi(x)

i∑
j=i−2

Mi+1,Bj

+(yi+1 − x)ci,2Mi+1,Bi−2
+ (x − yi)ci−1,2Mi,Bi−1

≡ 1.

As according to (5)

i−1∑
j=i−3

Mi,Bj
=

i∑
j=i−2

Mi+1,Bj
= 0 (10)

the following identity is valid

(yi+1 − x)ci,2Mi+1,Bi−2
+ (x − yi)ci−1,2Mi,Bi−1

≡ 1.
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From here one gets the equalities

yr
i+1ci,2Mi+1,Bi−2

− yr
i ci−1,2Mi,Bi−1

≡ δ1,r, r = 0, 1,

where δ1,r is the Kronecker symbol. Solving this system of equations and
using (8) or (10), we obtain

Mj,Bi
=

yi+3 − yi+1

cj−1,2ω
′
i+1(yj)

, j = i + 1, i + 2, i + 3,

ωi+1(x) = (x − yi+1)(x − yi+2)(x − yi+3)

or with the notation cj,3 = yj+2 − yj+1, j = i, i + 1,

Mi+1,Bi
=

1

ci,2ci,3
,

Mi+2,Bi
= − 1

ci+1,2

(
1

ci,3
+

1

ci+1,3

)
, (11)

Mi+3,Bi
=

1

ci+2,2ci+1,3

.

4 Properties of discrete GB-splines

The functions Bj , j = −3, . . . , N −1 possess many of the properties inherent
in usual discrete polynomial b-splines. To provide inequality (4), in what
follows we need to impose additional conditions on the functions Φj and Ψj .
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The proofs of the following four assertions repeat those given in [5].

Lemma 2 If the conditions

0 < 2h−1
j−1Ψj−1(xj) < Dj−1,1Ψj−1(xj),

0 < 2h−1
j Φj(xj) < −Dj,1Φj(xj), j = i + 1, i + 2, i + 3 (12)

are satisfied, then in (11) cj,k > 0, j = i, . . . , i + 4 − k; k = 2, 3, and

(−1)j−i−1Mj,Bi
> 0, j = i + 1, i + 2, i + 3. (13)

Theorem 3 Let the conditions of Lemma 2 be satisfied, the functions Φj

and Ψj be convex and Dj,2Φj and Dj,2Ψj be strictly monotone on the interval
[xj , xj+1] for all j. Then the functions Bj, j = −3, . . . , N − 1 have the
following properties:

1. Bj(x) > 0 for x ∈ (xj + τ
Rj

j , xj+4 − τ
Lj+3

j+4 ), and Bj(x) ≡ 0 if x /∈
(xj , xj+4);

2. Bj satisfies the smoothness conditions (3);

3.
∑N−1

j=−3 yr
j+2Bj(x) ≡ xr, r = 0, 1 for x ∈ [a, b], Φj(x) = cj−1,2cj−2,3Bj−3(x),

Ψj(x) = cj,2cj,3Bj(x) for x ∈ [xj , xj+1], j = 0, . . . , N − 1.
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Lemma 4 The function Bi has support of minimum length.

Theorem 5 The functions Bi, i = −3, . . . , N − 1, are linearly independent
and form a basis of the space SDG

4 of discrete generalized splines.

5 Local approximation by discrete GB-splines

According to Theorem 5, any discrete generalized spline S ∈ SDG
4 can be

uniquely written in the form

S(x) =
N−1∑
j=−3

bjBj(x) (14)

for some constant coefficients bj .

If the coefficients bj in (14) are known, then by virtue of formula (9)
we can write out an expression for the discrete generalized spline S on the
interval [xi, xi+1], which is convenient for calculations,

S(x) = bi−2 + b
(1)
i−1(x − yi) + b

(2)
i−1Φi(x) + b

(2)
i Ψi(x), (15)

where

b
(k)
k =

b
(k−1)
j − b

(k−1)
j−1

cj,4−k
, k = 1, 2; b

(0)
j = bj . (16)
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The representations (14) and (15) allow us to find a simple and effective
way to approximate a given continuous function f from its samples.

Theorem 6 Let a continuous function f be given by its samples f(yj), j =
−1, . . . , N + 1. Then for bj = f(yj+2), j = −3, . . . , N − 1, formula (14)
is exact for polynomials of the first degree and provides a formula for local
approximation.

Proof: It suffices to prove that the identities

N−1∑
j=−3

yr
j+2Bj(x) ≡ xr, r = 0, 1 (17)

hold for x ∈ [a, b]. Using formula (15) with the coefficients bj−2 = 1 and
bj−2 = yj , j = i − 1, i, i + 1, i + 2, for an arbitrary interval [xi, xi+1], we find
that identities (17) hold.

For bj−2 = f(yj), formula (15) can be rewritten as

S(x) = f(yi) + f [yi, yi+1](x − yi) + (yi+1 − yi−1)f [yi−1, yi, yi+1]c
−1
i−1,2Φi(x)

+(yi+2 − yi)f [yi, yi+1, yi+2]c
−1
i,2 Ψi(x), x ∈ [xi, xi+1].

This is the formula of local approximation. The theorem is thus proved. ♠
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Corollary 7 Let a continuous function f be given by its samples fj = f(xj),
j = −2, . . . , N + 2. Then by setting

bj−2 = fj − 1

cj−1,2

(
Ψj−1(xj)f [xj, xj+1] − Φj(xj)f [xj−1, xj]

)
(18)

in (14), we obtain a formula of three-point local approximation, which is exact
for polynomials of the first degree.

Proof: To prove the corollary, it is sufficient to take the monomials 1 and
x as f . Then according to (18), we obtain bj−2 = 1 and bj−2 = yj and it only
remains to make use of identities (17). This proves the corollary. ♠

Equation (15) permits us to write the coefficients of the spline S in its
representation (14) of the form

bj−2 =

{
S(yj) − Dj−1,2S(xj−1)Φj−1(yj) − Dj,2S(xj)Ψj−1(yj), yj < xj ,
S(yj) − Dj,2S(xj)Φj(yj) − Dj+1,2S(xj+1)Ψj(yj), yj ≥ xj .

According to this formula we have bj−2 = S(yj)+O(h
2

j ), hj = max(hj−1, hj).
Hence it follows that the control polygon (e.g., see [4]) converges quadratically
to the function f when bj−2 = f(yj), or if the formula (18) is used.
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6 Recurrence formulae for discrete GB-splines

Let us define functions

Bj,2(x) =




Dj,2Ψj(x), x ∈ [xj , xj+1),
Dj+1,2Φj+1(x), x ∈ [xj+1, xj+2],
0, otherwise,

j = i, i + 1, i + 2. (19)

We assume that the functions Dj,2Ψj and Dj+1,2Φj+1 are strictly monotone on
[xj , xj+1) and [xj+1, xj+2] respectively. The splines Bj,2 are a generalization
of the “hat-functions” for polynomial b-splines. They are nonnegative and,
furthermore, Bj,2(xj+l) = δ1,l, l = 0, 1, 2.

According to (9), (11) and (19) the function D2Bi can be written as

D2Bi(x) =
i+3∑

j=i+1

Mj,Bi
Bj−1,2(x)

=
1

ci,3

(Bi,2(x)

ci,2
− Bi+1,2(x)

ci+1,2

)
− 1

ci+1,3

(Bi+1,2(x)

ci+1,2
− Bi+2,2(x)

ci+2,2

)
. (20)

The function D1Bi satisfies the relation

D1Bi(x) =
Bi,3(x)

ci,3

− Bi+1,3(x)

ci+1,3

, (21)
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where

Bj,3(x) =




Dj,1Ψj(x)
cj,2

, x ∈ [xj , xj+1),

1 +
Dj+1,1Φj+1(x)

cj,2
− Dj+1,1Ψj+1(x)

cj+1,2
, x ∈ [xj+1, xj+2),

−Dj+2,1Φj+2(x)
cj+1,2

, x ∈ [xj+2, xj+3),

0, otherwise.

(22)

Using formula (22) it is easy to show that functions Bj,3, j = −2, . . . , N−1
satisfy the first and second smoothness conditions in (3), have supports of
minimum length, are linearly independent and form a partition of unity,

N−1∑
j=1

Bj,3(x) ≡ 1, x ∈ [a, b].

Applying formulae (20) and (21) to the representation (14) we also obtain

D1S(x) =
N−1∑
j=−2

b
(1)
j Bj,3(x), D2S(x) =

N−1∑
j=−1

b
(2)
j Bj,2(x), (23)

where b
(k)
j , k = 1, 2 are defined in (16).
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7 Series of discrete GB-splines (uniform case)

Let us suppose that each step size hi = xi+1 − xi of the mesh ∆ : a = x0 <
x1 < · · · < xN = b is an integer multiple of the same tabulation step, τ , of
some detailed uniform refinement on [a, b].

For θ ∈ IR, τ > 0 define

IRθτ = {θ + iτ | i is an integer}

and let IRθ0 = IR. For any a, b ∈ IR and τ > 0 let

[a, b]τ = [a, b] ∩ IRaτ .

The functions Bj,2, Bj,3, and Bj with τLi
j = τRi

j = τ , j = i, i + 1 for all i
are nonnegative on the discrete interval [a, b]τ . This permits us to reprove the
main results for discrete polynomial splines of [9] for series of discrete gener-
alized splines. Even more, one can obtain the results of generalized splines
of [5] from the corresponding statements for discrete generalized splines as a
limiting case when τ → 0.

In particular, if in (14) and (23) we have the coefficients b
(k)
j > 0, k =

0, 1, 2, j = −3 + k, . . . , N − 1, then the spline S will be a positive, monoton-
ically increasing and convex function on [a, b]τ .

Let f be a function defined on the discrete set [a, b]τ . We say that f has
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a zero at the point x ∈ [a, b]τ provided

f(x) = 0 or f(x − τ) · f(x) < 0.

When f vanishes at a set of consecutive points of [a, b]τ , say f is 0 at
x, . . . , x + (r − 1)τ , but f(x − τ) · f(x + rτ) 6= 0, then we call the set
X = {x, x + τ, . . . , x + (r − 1)τ} a multiple zero of f , and we define its
multiplicity by

ZX(f) =




r, if f(x − τ) · f(x + rτ) < 0 and r is odd,
r, if f(x − τ) · f(x + rτ) > 0 and r is even,
r + 1, otherwise.

This definition assures that f changes sign at a zero if and only if the zero
is of odd multiplicity.

Let Z[a,b]τ (f) be the number of zeros of a function f on the discrete set
[a, b]τ , counted according to their multiplicity. Let us denote DL

1 S(x) =
S[x − τ, x].

Theorem 8 (Rolle’s Theorem For Discrete Generalized Splines.) For
any S ∈ SDG

4 ,
Z[a,b]τ (D

L
1 S) ≥ Z[a,b]τ (S) − 1. (24)
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Proof: First, if S has a z-tuple zero on the set X = {x, . . . , x + (r − 1)τ},
it follows that DL

1 S has a (z − 1)-tuple zero on the set X ′ = {x + τ, . . . , x +
(r − 1)τ}. Now if X1 and X2 are two consecutive zero sets of S, then it is
trivially true that DL

1 S must have a sign change at some point between X1

and X2. Counting all of these zeros, we arrive at the assertion (24). This
completes the proof. ♠

Lemma 9 Let the function Di,2Φi and Di,2Ψi be strictly monotone on the
interval [xi, xi+1] for all i. Then for every S ∈ SDG

4 which is not identically
zero on any interval [xi, xi+1]τ , i = 0, . . . , N − 1,

Z[a,b]τ (S) ≤ N + 2.

Proof: According to (19) and (23), the function D2S has no more than one
zero on [xi, xi+1], because the functions D2Φi and D2Ψi are strictly monotone
and nonnegative on this interval. Hence Z[a,b]τ (D2S) ≤ N . Then according
to the Rolle’s Theorem 8, we find Z[a,b]τ (S) ≤ N + 2. This completes the
proof. ♠

Denote by suppτBi = {x ∈ IRa,τ |Bi(x) > 0} the discrete support of the
spline Bi, i.e. the discrete set (xi + τ, xi+4 − τ)τ .

Theorem 10 Assume that ζ−3 < ζ−2 < · · · < ζN−1 are prescribed points on
the discrete line IRa,τ . Then

D = det(Bi(ζj)) ≥ 0, i, j = −3, . . . , N − 1
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and strict positivity holds if and only if

ζi ∈ suppτBi, i = −3, . . . , N − 1. (25)

The proof of this theorem is based on Lemma 9 and repeats that of
Theorem 8.66 in [9, p.355]. The following statements follow immediately
from Theorem 10.

Corollary 11 The system of discrete gb-splines {Bj}, j = −3, . . . , N − 1,
associated with knots on IRa,τ is a weak Chebyshev system according to the
definition given in [9, p. 36], i.e. for any ζ−3 < ζ−2 < · · · < ζN−1 in IRa,τ we
have D ≥ 0 and D > 0 if and only if condition (25) is satisfied. In the latter
case the discrete generalized spline S(x) =

∑N−1
j=−3 bjBj(x) has no more than

N + 2 zeros.

Corollary 12 If the conditions of Theorem 5 are satisfied, then the solution
of the interpolation problem

S(ζi) = fi, i = −3, . . . , N − 1, fi ∈ IR (26)

exists and is unique.

Let A = {aij}, i = 1, . . . , m, j = 1, . . . , n, be a rectangular m × n
matrix with m ≤ n. The matrix A is said to be totally nonnegative (totally
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positive) (e.g., see [3]) if the minors of all order of the matrix are nonnegative
(positive), i.e. for all 1 ≤ p ≤ m we have

det(aikjl
) ≥ 0 (> 0) for all

1 ≤ i1 < · · · < ip ≤ m,
1 ≤ j1 < · · · < jp ≤ n.

Corollary 13 For arbitrary integers −3 ≤ ν−3 < · · · < νp−4 ≤ N − 1 and
ζ−3 < ζ−2 < · · · < ζp−4 in IRa,τ we have

Dp = det{Bνi
(ζj)} ≥ 0, i, j = −3, . . . , p − 4

and strict positivity holds if and only if

ζi ∈ suppτ Bνi
, i = −3, . . . , p − 4

i.e. the matrix {Bj(ζi)}, i, j = −3, . . . , N − 1 is totally nonnegative.

The last statement is proved by induction based on Theorem 5 and the
recurrence relations for the minors of the matrix {Bj(ζi)}. The proof does
not differ from that of Theorem 8.67 described by [9, p.356].

Since the supports of discrete gb-splines are finite, the matrix of sys-
tem (26) is banded and has seven nonzero diagonals in general. The matrix
is tridiagonal if ζi = xi+2, i = −3, . . . , N − 1.



7 Series of discrete GB-splines (uniform case) C897

An important particular case of the problem, in which S ′(xi) = f ′
i , i =

0, N , can be obtained by passing to the limit as ζ−3 → ζ−2, ζN−1 → ζN−2.

De Boor and Pinkus [2] proved that linear systems with totally nonnega-
tive matrices can be solved by Gaussian elimination without choosing a pivot
element. Thus, the system (26) can be solved effectively by the conventional
Gauss method.

Denote by S−(v) the number of sign changes (variations) in the sequence
of components of the vector v = (v1, · · · , vn), with zeros being neglected.
Karlin [3] showed that if a matrix A is totally nonnegative then it decreases
the variation, i.e.

S−(Av) ≤ S−(v).

By virtue of Corollary 4, the totally nonnegative matrix {Bj(ζi)}, i, j =
−3, . . . , N − 1, formed by discrete gb-splines decreases the variation.

For a bounded real function f , let S−(f) be the number of sign changes
of the function f on the real axis IR, without taking into account the zeros

S−(f) = sup
n

S−[f(ζ1), . . . , f(ζn)], ζ1 < ζ2 < · · · < ζn.

Theorem 14 The discrete generalized spline S(x) =
∑N−1

j=−3 bjBj(x) is a
variation diminishing function, i.e. the number of sign changes of S does
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not exceed that in the sequence of its coefficients:

S−
( N−1∑

j=−3

bjBj

)
≤ S−(b), b = (b−3, . . . , bN−1).

The proof of this statement does not differ from that of Theorem 8.68 for
discrete polynomial b-splines in [9, p.356].
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