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On discrete GB-splines
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Abstract

Explicit formulae and recurrence relations are obtained for dis-
crete generalized B-splines (discrete GB-splines for short). Properties
of discrete GB-splines and their series are studied. It is shown that the
series of discrete GB-splines is a variation diminishing function and the
systems of discrete GB-splines are weak Chebyshev systems.

* School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima
30000, THAILAND. mailto:boris@math.sut.ac.th

OSee http://anziamj.austms.org.au/V42/CTAC99/Kvas for this article and ancillary
services, (© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.


mailto:boris@math.sut.ac.th
http://anziamj.austms.org.au/V42/CTAC99/Kvas

Contents C878
Contents

1 Introduction C878
2 Discrete generalized splines C879
3 Construction of discrete GB-splines C882
4 Properties of discrete GB-splines C885
5 Local approximation by discrete GB-splines C887
6 Recurrence formulae for discrete GB-splines C890
7 Series of discrete GB-splines (uniform case) C892
References C898

1 Introduction

The tools of generalized splines and GB-splines are widely used in solving

problems of shape-preserving approximation (e.g., see [7]).

Recently, in [1]

a difference method for constructing shape-preserving hyperbolic tension
splines as solutions of multipoint boundary value problems was developed.
Such an approach permits us to avoid the computation of hyperbolic func-
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tions and has substantial other advantages. However, the extension of a mesh
solution will be a discrete hyperbolic tension spline.

The contents of this paper is as follows. In Section 2 we give a definition
of a discrete generalized spline. Next, we construct a minimum length local
support basis (whose elements are denoted as discrete GB-splines) of the new
spline; see Section 3. Properties of GB-splines are discussed in Section 4,
while the local approximation by discrete GB-splines of a given continuous
function from its samples is considered in Section 5. In Section 6 we derive
recurrence formulae for calculations with discrete GB-splines. The properties
of GB-spline series are summarized in Section 7.

2 Discrete generalized splines

Let a partition A : a = xg < 21 < --- < xy = b of the interval [a, b] be given.
We will denote by SPC the space of continuous functions whose restriction
to a subinterval [z;,z;11], ¢ = 0,...,N — 1 is spanned by the system of
four linearly independent functions {1,z,®;, ¥;}. In addition, we assume
that each function in SPY is smooth in the sense that for given TiLj > 0
and TiRj > 0, j =1 — 1,4, the values of its first and second central divided
differences with respect to the points x; — Tl»LH, Tiy Ty + TiRFl and x; — 7
T;, T; + TiRi coincide.

1 0
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Given a continuous function S we introduce the difference operators
DiS(x) = D;1S(z) = (AEiS[x — 7, ] + A\ Sz, + 7)) (1 —t)
+(A Sl — T ] + AL Sz + T
DyS(x) = DipS(x) = 2S[x — 71l 2,2+, ](1 —t)
+2S[x — ZH,:z: $—|—7‘ 1,
T € lry, i), 1=0,...,N—1,
where )\fi =1- )\JL = TjRi/(TjLi + T]Ri), j=1d4,0+1and t = (x — x;)/h;,
h; = x;41 — x;. The square parentheses denote the usual first and second

divided differences of the function S with respect to the argument values

L: R, - .
Ty — T Xy, T, =10+ L

Definition 1 A discrete generalized spline is a function S € SPY such that

1. for any x € [z, xi14],1=0,...,N —1
+ [S(@ig1) — Vi(@igr) Miga]t
where M; = D;5S;(z;), j = i,i+ 1, and the functions ®; and V; are
subject to the constraints
i(xi1 —7ihy) = Pi(win) = iwi + 1) =0,
U, (z; — TZ»Li) = Ui(z;) = Vy(x; + TZ»R") =0, (2)

Dio®i(x;) = 1, DipVi(xig1) =1,
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2. S satisfies the following smoothness conditions

Si—l(-’l?i) = Si(xi),
Di_1’151_1<Ii) = Di’lsi(.’ﬂi), = 1, cey N — 1 (3)
Di—1,2Si—1<xi) = Di,QSi(%'i),

This definition generalizes the notion of a discrete polynomial spline in [9]
and of a generalized spline in [5, 6]. The latter one can be obtained by setting
=l =0, j=ii+1forali Ifr” =7Fand 77 =78, j =i —1,i
then according to smoothness conditions (3) the values of the functions S;_;
and S; at the three consecutive points x; — TZ-L , Ty T; TiR coincide. Setting
T]-L" = T]Ri =T, J = i,i+ 1 we obtain Dy;S(x) = S[x — 7,z + 7;] and
D, ;S(x) = S[x — 73, x,x + 7], which is the case discussed in [1].

The functions ®; and ¥; depend on the tension parameters which influ-
ence the behaviour of S fundamentally. We call them the defining functions.
In practice one takes ®;(x) = ;(p;, x), Vi(x) = Vi(qi, ), 0 < pi,q; < 0.
In the limiting case when p;, ¢; — oo we require that lim,, . ®;(p;,z) = 0,
x € (x4, x41] and limg, o Vi(qi, x) = 0, & € [z, ;41) so that the function S
in formula (1) turns into a linear function. Additionally, we require that if
p; = ¢q; = 0 for all 7, then we get a discrete cubic spline. If TZ-Lj = TiRj = T,
j =1 — 1,7 for all ¢ then this spline coincides with a discrete cubic spline
of [10]. The case 7; = 7 for all i was considered in [§].
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3 Construction of discrete GB-splines

Let us construct a basis for the space of discrete generalized splines SP¢
by using functions which have local supports of minimum length. Since
dim(SP%) = 4N — 3(N — 1) = N + 3 we extend the grid A by adding the
points x;, j = —3, -2, =1, N+1, N+2, N+3,such that z_3 < 25 <2_; <,
b < TN+l < TNy2 < TN43-

We demand that the discrete GB-splines B;, : = —3,..., N — 1 have the
properties

Bi (ﬂf) > 07 VS (xl + TiRiv Litqg — TiL—‘riig)? (4)
Bi(x) = 0, ¢ (zi,Tiya),
N-1
> Bj(z) = 1, z€lab] (5)
j=-3
According to (1), on the interval [x;, z;41], 7 = 4,...,7 + 3, the discrete
GB-spline B; has the form
Bi(z) = Bij(z) = Pij(x) + ®(2)M; s, + V;(2) Mjs1p,, (6)

where P ; is a polynomial of the first degree and M;p, = D, 2Bi(z;), | =
j,J + 1 are constants to be determined. The smoothness conditions (3)
together with the constraints (2) give the following relations
Pij(x;) = Pjalr;)+ 2 Mjp,
DjaPij(x;) = DjaaPija(x;) +¢i12M;m;,
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where

zi = zi(x;) = Vi a(x5) — Pj(z5),
cioiz = Dj 11V (x5) — Dj1®5(xy).

Thus in (6)

Pj(x) = Pij1(x) + [z + ¢jo12(x — 2;)| M) B, (7)

By repeated use of this formula we get

J i+3
Pjx)= Y [a+ca ez —z)]Mp, =— Y [a+ a0z —x)|Msp,.
I=i+1 I=j+1

As B; vanishes outside the interval (z;, z;44), we have from (7) that P ; =0
for j = 4,7+ 3. In particular, the following identity is valid

i+3

> [z +¢ia(e —ay)|Mp, =0,

j=i+1
from which one obtains the equalities
i+3

T _ _ _

Z Cj—l,Qy‘Mj,Bi = 0, r = 0, 1, yj = ZL‘j — .
J .

j=it1 €j-1,2

Zj

(8)
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Thus the formula for the discrete GB-spline B; takes the form

U, (z) Mt 8, T € [T, Ti41),

(r — yiz1)CioMip1 B, + Pig1 () Mia B,

+ Vis1(z) Mitom,, T € [Tit1, Tita),
Bi(z) =3 Wirs — ¥)Civoo2Miysp, + Pijo(w) My, (9)

+ Wir2(2) Miya B, T € [Tita, Tiys),

iy 3(r)Miys B, T € [Tigs, Tita),

0, otherwise.

Substituting formula (9) into the normalization condition (5) written for
x € [x;,x:41], we obtain

7 i—1
Z Bj(x) = Z M; p; + U, (z Z M1,
j=i—3 j=i-3 Jj=i=2

+(Yir1 —x)CioMipap, , + (x —yi)cic12M; B, , = 1.

As according to (5)

Z Mg, = Z Mij1p, =0 (10)

j=i—3 Jj=i—2

the following identity is valid

(Yir1 — x)ciaMiv1m, , + (x —yi)cim12M;p, , = 1.
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From here one gets the equalities
T T —
Yir1CioMiip, , —Yicim12Mip, , =01, 17=0,1,

where 9, is the Kronecker symbol. Solving this system of equations and
using (8) or (10), we obtain

M5, yi+3_/yi+1 =it li+2i+3
Cj—1,2wi+1<yj)
Wi+1($) = (UU - yz’+1)($ - ?Ji+2)($ - y¢+3)

or with the notation ¢;3 = yj10 — yj41, J = 1,1 + 1,

1
Mi-‘rl,Bi - 6'20'37
1 1 1
Miop, = — — + ; (11)
’ Cit12 \Ci;3  Cit1,3
1
Mi+3,Bz‘ =

Ci+2,2Ci+1,3

4 Properties of discrete GB-splines

The functions B, j = —3,..., N — 1 possess many of the properties inherent
in usual discrete polynomial B-splines. To provide inequality (4), in what
follows we need to impose additional conditions on the functions ®; and ¥;.
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The proofs of the following four assertions repeat those given in [5].

Lemma 2 If the conditions

0 < 2050 (2)) < Djm1aWa(ay),

0 < 2h;'®(x;) < —D;j ®;(x;), j=i+1i+2,i+3 (12)
are satisfied, then in (11) ¢j, >0, j=14,...,i+4—k; k=2,3, and

(=1 M;p, >0, j=i+1,i+2,i+3. (13)

Theorem 3 Let the conditions of Lemma 2 be satisfied, the functions ®;
and V; be conver and D;2®; and D; oV, be strictly monotone on the interval
[z, 2541 for all j. Then the functions B;, j = —3,...,N — 1 have the
following properties:

1. Bj(z) > 0 for z € (x; +7-]'Rj,$]’+4 — rfjf), and Bj(z) = 0 if z ¢
("Bj7mj+4);
2. B, satisfies the smoothness conditions (3);

3. Zé\]:—_lig y§+2Bj($) = LUT, r = O, 1 f0T$ € [CL, b], (I)](II?) = Cj_l’QCj_Q’gBj_3<x);
‘IU((E) = Cj’QijgBj(fI?) fOT S [mj,mj+1], 7=0,...,N—1.



5 Local approximation by discrete GB-splines C887

Lemma 4 The function B; has support of minimum length.

Theorem 5 The functions B;, 1 = —=3,..., N — 1, are linearly independent
and form a basis of the space SPY of discrete generalized splines.

5 Local approximation by discrete GB-splines

According to Theorem 5, any discrete generalized spline S € SPY can be
uniquely written in the form

S(r) = 3 byBs() (14)

for some constant coefficients b;.

If the coefficients b; in (14) are known, then by virtue of formula (9)
we can write out an expression for the discrete generalized spline S on the
interval [x;, z;11], which is convenient for calculations,

S(x) = by + b (@ — i) + 07, () + b7 W, (), (15)
where
pE=1) _ (k1)
W= k=12 b =0, (16)

Cja—k
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The representations (14) and (15) allow us to find a simple and effective
way to approximate a given continuous function f from its samples.

Theorem 6 Let a continuous function f be given by its samples f(y;), j =
—1,...,N+ 1. Then for b; = f(yj+2), J = =3,...,N — 1, formula (14)
1s exact for polynomials of the first degree and provides a formula for local
approximation.

Proof: It suffices to prove that the identities
N-1
> YjeBjlz)=a", r=0,1 (17)
j=—3

hold for x € [a,b]. Using formula (15) with the coefficients b;_5 = 1 and
bj_o=y;, j=1—1,4,i+ 1,7+ 2, for an arbitrary interval [x;, x;11], we find
that identities (17) hold.

For b;_s = f(y;), formula (15) can be rewritten as

S(x) = fys) + flyi vism) (@ — ) + W1 — vim1) fWi—1, Yir v )6 2 @i ()
+(Yir2 — yi)f[%yz’+17%’+2]ci_,21‘1/i($), T € 24, Tiy1).

This is the formula of local approximation. The theorem is thus proved. &
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Corollary 7 Let a continuous function f be given by its samples f; = f(z;),
j=-=2,...,N+2. Then by setting

1

bj2=f;i—

(U1 () flavgs wy0]) = () flag v, 2]) - (18)

in (14), we obtain a formula of three-point local approzimation, which is exact
for polynomials of the first degree.

Proof: To prove the corollary, it is sufficient to take the monomials 1 and
z as f. Then according to (18), we obtain b;_» = 1 and b;_ = y; and it only
remains to make use of identities (17). This proves the corollary. [ )

Equation (15) permits us to write the coefficients of the spline S in its
representation (14) of the form

by = { S(y;) = Dj-125(xj-1)®j-1(y;) — Dj2S(x)V;-1(y;), v <y,

’ S(;) = Dj2S()®;(y;) — Djr125(x541) V5 (y;), Yj = ;.
According to this formula we have b;_o = S(y;) + O(E?), h; = max(hj_1, h;).
Hence it follows that the control polygon (e.g., see [4]) converges quadratically
to the function f when b;_5 = f(y;), or if the formula (18) is used.
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6 Recurrence formulae for discrete GB-splines

Let us define functions

Dj2V(x), T € [x),j41),
Bja(z) =1{ Dji12P541(2), @ € [rj41, T)12], j=di+1i+2. (19)
0, otherwise,

We assume that the functions D, ,W; and D, 9®;44 are strictly monotone on
[2;,j11) and [z;41, Tj4o] respectively. The splines B, are a generalization
of the “hat-functions” for polynomial B-splines. They are nonnegative and,
furthermore, B, (x;4) = 1, 1 =0,1,2.

According to (9), (11) and (19) the function DyB; can be written as

i+3
DoBi(x) = Y M;pBj 12(2)
J=i+1
_ i(Bm(ﬂf) B Bz’+1,2($)) 1 (Bi+1,2($) B Bi+2,2(33)) (20)
i3 Ci2 Cit1,2 Ci+1,3 Cit+1,2 Ci42,2

The function D;B; satisfies the relation

DyBi(x) = Bis(z) Bi+1,3(35)7 (21)

Ci3 Cit+1,3
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where

D V.(x

j’lT;()’ T € [T, 711),
Di11®i(z)  Djp1a¥ia(z)

Bj,3(x) = 1—11_) (I)Cj,Q( ) N Cj+1,2 » TE [xj+17mj+2); (22)

, ol

_%’ T € [Tji0,Tj43),

0, otherwise.

Using formula (22) it is easy to show that functions B; 3, j = —2,..., N—1
satisfy the first and second smoothness conditions in (3), have supports of
minimum length, are linearly independent and form a partition of unity,

N-1
Bjjg(ﬂ?) = 1, T e [a, b]
j=1
Applying formulae (20) and (21) to the representation (14) we also obtain
N-1 N-1

DiS(z) = 3 bBjs(x), DuS(z) = Y bYBja(x), (23)

j=—2 j=—1

where bgk), k = 1,2 are defined in (16).
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7 Series of discrete GB-splines (uniform case)

Let us suppose that each step size h; = x;,1 — x; of the mesh A : a = 2y <
r1 < -+ < xy = bis an integer multiple of the same tabulation step, 7, of
some detailed uniform refinement on [a, b].

For 6 € R, 7 > 0 define
Ry, = {0 + it | i is an integer}
and let IRgo = R. For any a,b € R and 7 > 0 let

la,0]> = [a,5] N Ry, .

The functions B, », B;3, and B; with TjLi = TJRi =71,7=1,1+ 1 forall ¢

are nonnegative on the discrete interval [a, b],. This permits us to reprove the
main results for discrete polynomial splines of [9] for series of discrete gener-
alized splines. Even more, one can obtain the results of generalized splines
of [5] from the corresponding statements for discrete generalized splines as a
limiting case when 7 — 0.

In particular, if in (14) and (23) we have the coefficients bgk) >0, k =
0,1,2, j=—=3+k,..., N —1, then the spline S will be a positive, monoton-
ically increasing and convex function on [a, b],.

Let f be a function defined on the discrete set [a,b].. We say that f has
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a zero at the point = € [a, b], provided

fx)=0 or f(z—71)-f(z)<DO.

When f vanishes at a set of consecutive points of [a,b],, say f is 0 at
z,...,x + (r — 1)1, but f(x —7) - f(x +r7) # 0, then we call the set
X =A{z,z+7,...,0 4+ (r — 1)7} a multiple zero of f, and we define its
multiplicity by

T, if f(x—7)-f(x+r7)>0and r is even,

T, if f(x—7)-f(zr+r7)<0andrisodd,
Zx(f) = - f
r+ 1, otherwise.

This definition assures that f changes sign at a zero if and only if the zero
is of odd multiplicity.

Let Zi,4,(f) be the number of zeros of a function f on the discrete set
[a,b], counted according to their multiplicity. Let us denote D¥S(z) =
Sle — 1,z

Theorem 8 (Rolle’s Theorem For Discrete Generalized Splines.) For
any S € SPC,
Z[a,bh(Df/S) Z Z[a’b]‘r(S) - L (24)
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Proof: First, if S has a z-tuple zero on the set X = {z,...,x + (r — 1)1},
it follows that DFS has a (z — 1)-tuple zero on the set X' = {z +7,..., 2+
(r —1)7}. Now if X! and X? are two consecutive zero sets of S, then it is
trivially true that DES must have a sign change at some point between X!
and X?2. Counting all of these zeros, we arrive at the assertion (24). This
completes the proof. '

Lemma 9 Let the function D;2®; and D, oV; be strictly monotone on the
interval [x;, x;41] for all i. Then for every S € SPY which is not identically
zero on any interval [x;, i1, 1 =0,..., N — 1,

Ziap), (S) < N+ 2.

Proof: According to (19) and (23), the function D5S has no more than one
zero on [x;, x;41], because the functions Dy®; and Dy W; are strictly monotone
and nonnegative on this interval. Hence Zj,p, (D2S) < N. Then according
to the Rolle’s Theorem 8, we find Zj,4,(S) < N + 2. This completes the
proof. [ )

Denote by supp,B; = {z € R, |B;(z) > 0} the discrete support of the
spline By, i.e. the discrete set (z; + T, Tj1q4 — 7).
Theorem 10 Assume that (_3 < (_o < -+ < (y_1 are prescribed points on
the discrete line R, .. Then
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and strict positivity holds if and only if

¢ €supp,B;, i=-3,...,N—1. (25)

The proof of this theorem is based on Lemma 9 and repeats that of
Theorem 8.66 in [9, p.355]. The following statements follow immediately
from Theorem 10.

Corollary 11 The system of discrete GB-splines {B,}, j = —3,...,N — 1,
associated with knots on R, . is a weak Chebyshev system according to the
definition given in [9, p. 36], i.e. for any (_3 < (o < -+ < (y—1 in R, we
have D > 0 and D > 0 if and only if condition (25) is satzsﬁed In the latter
case the discrete generalized spline S(x) = Z;V__lgb Bj(x) has no more than
N + 2 zeros.

Corollary 12 If the conditions of Theorem 5 are satisfied, then the solution
of the interpolation problem

S(Q):fl, 22—3,,N—1, flGIR (26)
exists and is unique.

Let A = {a;}, i = 1,...,m, j = 1,...,n, be a rectangular m x n
matrix with m < n. The matrix A is said to be totally nonnegative (totally
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positive) (e.g., see [3]) if the minors of all order of the matrix are nonnegative
(positive), i.e. for all 1 < p < 'm we have

1<y <<, <m,

) >
det(a; ;) > 0 (>0) for all 1<ji<--<j <n.

Corollary 13 For arbitrary integers —3 < v_3 < --- < 1vp_4 < N —1 and
(3 < (g <-+- < (pg in R, we have

D, =det{B,,((;)} >0, 4,j=-3,....,p—4
and strict positivity holds if and only if
(i €supp,B,,, 1=-3,...,p—4
i.e. the matriz {B;(¢,)}, 1,7 = =3,..., N — 1 is totally nonnegative.
The last statement is proved by induction based on Theorem 5 and the

recurrence relations for the minors of the matrix {B;({;)}. The proof does
not differ from that of Theorem 8.67 described by [9, p.356].

Since the supports of discrete GB-splines are finite, the matrix of sys-
tem (26) is banded and has seven nonzero diagonals in general. The matrix
is tridiagonal if (; = x40, 1 =—3,..., N — 1.
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An important particular case of the problem, in which S’(x;) = f/, i =

79

0, N, can be obtained by passing to the limit as (_3 — (o, (v_1 — (N_2-

De Boor and Pinkus [2] proved that linear systems with totally nonnega-
tive matrices can be solved by Gaussian elimination without choosing a pivot
element. Thus, the system (26) can be solved effectively by the conventional
Gauss method.

Denote by S~ (v) the number of sign changes (variations) in the sequence
of components of the vector v .= (vy,---,v,), with zeros being neglected.
Karlin [3] showed that if a matrix A is totally nonnegative then it decreases
the variation, i.e.

ST(Av) < S7(v).

By virtue of Corollary 4, the totally nonnegative matrix {B;((;)}, 4,7 =
—3,...,N — 1, formed by discrete GB-splines decreases the variation.

For a bounded real function f, let S~(f) be the number of sign changes
of the function f on the real axis R, without taking into account the zeros

S_(f):S%pS_[f<<l)u7f(<n)]7 <1<<2<"'<Cn-

Theorem 14 The discrete generalized spline S(z) = Y N5b;B;(x) is a

variation diminishing function, i.e. the number of sign changes of S does



References C898

not exceed that in the sequence of its coefficients:

5—( Nf bij> <S5 (b), b= (by . ...by1).

i=—3

The proof of this statement does not differ from that of Theorem 8.68 for
discrete polynomial B-splines in [9, p.356].
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