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Numerical solutions for thin film flow down
the outside and inside of a vertical cylinder
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Abstract

We consider a model for thin film flow down the outside and inside of
a vertical cylinder. Our focus is the effect the curvature of the cylinder
has on the gravity driven instability of the advancing contact line
and to simulate the resulting fingering patterns that form due to this
instability. The governing partial differential equation is fourth order
with a nonlinear degenerate diffusion term that represents the stabilising
effect of surface tension. We present numerical solutions obtained by
implementing an efficient alternating direction implicit scheme. When
compared to the problem of flow down a vertical plane, we find that
increasing substrate curvature tends to increase the fingering instability
for flow down the outside of the cylinder, whereas flow down the inside
of the cylinder substrate curvature has the opposite effect. Further,
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we demonstrate the existence of nontrivial travelling wave solutions
which describe fingering patterns that propagate down the inside of a
cylinder at constant speed without changing form. These solutions are
perfectly analogous to those found previously for thin film flow down
an inclined plane.
Subject class: 76D08, 65M06, 76E17
Keywords: thin film flow, contact line instability, viscous fingering,
pattern formation
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1 Introduction

The fingering pattern formed by the contact line of a thin liquid film flowing
over a dry, or slightly prewetted, substrate is of significant interest to theo-
reticians and experimentalists alike [2, 14]. From a mathematical modelling
perspective, the appropriate governing equation is typically a fourth order
parabolic partial differential equation with a degenerate nonlinear diffusion
term [7, 13]. The highly unstable nature of these flows makes the task
of calculating accurate and efficient solutions a significant computational
challenge.



1 Introduction C379

In a recent study we considered the problem of thin film flow down the outside
of a vertical cylinder [12]. The dimensionless model derived in that paper is

∂h

∂t
= −∇ ·

[
h3∇

(
∇2h

)]
−
β

R̂2
∇ ·
[
h3∇h

]
−
∂

∂z
(h3) , (1)

where the dependent variable h(θ, z, t) measures the dimensionless height of
the fluid film radially from the cylinder wall, the spatial variables z and θ
denote the axial and angular directions in a cylindrical coordinate system,
respectively, and ∇ = ( 1

R̂
∂θ, ∂z) . The dimensionless parameter R̂ is a scal-

ing of the dimensional cylinder radius R with respect to the length scale
L = (γH/ρg)1/3 . Here γ is the surface tension, ρ is the fluid density, g is
acceleration due to gravity and H is the representative film height. The param-
eter β = 1 for this problem (other values of β are discussed below). A similar
model for the same problem is given by Smolka and SeGall [16]. We utilise
their experimental parameters for silicon oil here; they are γ = 21.9 dyn/cm,
ρ = 0.986 g/cm3, and H = 0.085 cm.

Equation (1) was derived under the assumption that H � L to ensure the
thinness of the film, but also requires that H � R. The complementary
regime of flow down the outside of a narrow fibre, for which the radius of
the cylinder is much less than the film thickness, was investigated in many
previous studies [3, 6].

In our recent study [12], we extended the work of Smolka and SeGall [16] to
produce fully three dimensional simulations and used these to confirm their
linear stability analysis. The problem of thin film flow down the outside of a
vertical cylinder is interesting for a further reason; it is perfectly analogous
to the problem of flow down an inverted plane (that is, flow down an inclined
plane making an angle π/2 < α < π to the horizontal) [9, 10]. Equation (1)
with β = 1 is precisely the equation for flow down an inverted plane derived by
Lin et al. [10], but expressed in cylindrical coordinates rather than Cartesian.
This analogy occurs because R̂θ is equivalent to the transverse direction on a
plane. The only difference between the mathematical formulations for the
two problems is that flow down the outside of a cylinder must be modelled
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on a periodic domain, which implies a dependence between the parameter R̂
and the width of the domain (specifically, the domain must be the same size
as the cylinder circumference, Lc = 2πR̂). This dependence between R̂ and Lc
does not apply for flow down an inverted plane. Mayo et al. [12] showed that
this single difference between the two analogous problem formulations leads
to very different conclusions about the stability of the contact line.

Mayo et al. [12] briefly mentioned that a value of β = −1 in (1) represents
flow down the inside of a vertical cylinder, again under the assumption that
the height of the film is much smaller than the cylinder radius. In this case,
the problem is perfectly analogous to flow down an inclined plane, but one
which is inclined in the range 0 < α < π/2 [7]. Again, like the case in which
β = 1 , flow on the inside of a cylinder requires Lc = 2πR̂ and a periodic
domain, whereas flow down an inclined plane does not.

The limit R̂ → ∞ for both flow down the outside and inside of a cylinder
corresponds to the very well studied equation for flow down a vertical plane
(α = π/2) [1, 4, 5, 7, 18]. By observing that β = 0 removes substrate
curvature completely from the model (1), we use this value of β as a ‘control’
against which we compare our results for β = 1 (outside a cylinder) and −1
(inside a cylinder).

In this article we present new results for flow down the inside of a cylinder
β = −1 to complement those presented by Mayo et al. [12] for β = 1 . We
find that substrate curvature influences the fingering patterns that form at the
contact line, but in contrasting ways. Further, we present numerical evidence
for the existence of nontrivial travelling wave solutions for flow down the
inside of a cylinder. The travelling wave profiles consist of a fingering pattern
that keeps its shape as it evolves with constant velocity. Such solutions do
not exist for flow down the outside of a cylinder.
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2 Numerical scheme

We employ an alternating direction implicit (adi) scheme for the solution of (1).
adi schemes are popular solution methods for thin film type equations [10,
11, 17]. A traditional implicit approach for solving (1) requires the costly
inversion of a two dimensional spatial operator at each time step of the
algorithm. The advantage of an adi scheme is that, through the approximate
factorisation of this two dimensional operator, it solves the same problem via
the inversion of simpler one dimensional operators.

Witelski and Bowen [19] reviewed and tested a number of adi schemes
for fourth order nonlinear diffusion equations . We make use of their non-
iterated version of the scheme, termed pL1 [19, Section 3.1], which derives
the psuedolinear factorisation of the backward Euler method for (1):

Lθw = −δt

{
∇ ·
[
(h(n))3∇

(
∇2h(n)

)]
+
β

R̂2
∇ ·
[
(h(n))3∇h(n)

]
+
∂

∂z

[
(h(n))3

]}
,

Lzv = w , h(n+1) = h(n) + v . (2)

Equation (2) is solved in sequence at each time step in order to update the
solution from h(n) to h(n+1). The linear operators Lθ and Lz are

Lθ =1+
δt

R̂4
∂θ

[(
h(n)

)3
(β∂θ + ∂θθθ)

]
, (3)

Lz =1+ δt∂z

[(
h(n)

)3( β
R̂2
∂z + ∂zzz

)]
+ 3δt

(
h(n)

)2
∂z , (4)

and are obtained by splitting the spatial operators into distinct θ and z parts.
As a result, each horizontal and vertical cross-section of the discretised domain
is effectively treated as an independent one dimensional problem. These are
referred to as the θ and z sweeps, respectively. The operators (3)–(4) are
linearised by treating nonlinear prefactors explicitly by evaluating them at
time t(n). We discretise Lθ and Lz using second order finite differences on a
rectangular grid. This leads to a linear pentadiagonal system for each sweep,
each of which is solved efficiently with a banded solver.
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The non-iterative pL1 scheme is first order in time, and was shown by Witel-
ski and Bowen [19] to outperform their alternative first order approximate
Newton method (denoted as N1). However, Witelski and Bowen also sug-
gested a number of second order methods which may be implemented for
further accuracy. Further, Witelski and Bowen implemented an adaptive time
stepping scheme, while we take uniform steps of δt = 0.01 .

To complete the problem formulation for (1), we provide boundary conditions
for the edges of the computational domain. The conditions imposed along
the top and bottom of the cylinder are

h(θ, 0) = 1 , hz(θ, 0) = 0 (5)

and
h(θ,Lz) = b , hz(θ,Lz) = 0 , (6)

respectively. The first condition in (5) simplifies analysis by imitating a
constant source of fluid at the top of the domain, feeding the flow and
encouraging finger growth. The first condition in (6) is due to the presence
of a precursor film of height b prewetting the domain. This precursor film
‘regularisation’ avoids the well studied contact line paradox (Mayo et al. [12],
and references therein, discuss related issues). We use b = 0.07 in this study.

The remaining two boundary conditions state that the fluid surface has zero
slope in the axial direction at either end of the domain. These boundary
conditions are incorporated into the model by imposing symmetry planes along
the top and bottom of the discrete grid; fictitious nodes which inevitably arise
in the spatial discretisation are allocated the value of their ‘mirror’ node from
inside the domain. This treatment of the boundaries preserves second order
accuracy through, for example, the discretisation hz ≈ (h1 − h−1)/(2∆z) =
0 , which implies that the fictitious node h−1 is assigned the value of the
inner h1 node.

Finally, (1) is subject to periodic boundary conditions on the lateral edges of
the domain θ = 0 and 2πR̂. These are implemented in a natural way by setting
fictitious nodes to the value of nodes from the other side of the domain. The
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consequence of this approach is that the θ sweep, described by the first line
of (2), now produces cyclic pentadiagonal systems. Computational expense is
minimised by using the Woodbury formula to regain regular pentadiagonal
systems [15].

A ‘moving window’ approach was taken in the following three dimensional
simulations. This arrangement shifts a small computational domain along
with the moving flow front every 10 units of dimensionless time. Essentially,
the algorithm is given an initial condition, the simulation is allowed to evolve
to t = 10 , and then the solution is imposed onto a new array such that the
apparent contact line of the solution is shifted back towards the ‘top’ of the
domain. The new array is then treated as the initial condition for the next
simulation to t = 10 . This method helps to centre the frame on the fingering
pattern at the contact line, removing the need for a large computational
domain.

3 Simulations

We begin by treating the axisymmetric version of (1):

∂h

∂t
= −

∂

∂z

[
h3
∂

∂z

(
β
h

R̂2
+
∂2h

∂z2

)
+ h3

]
. (7)

Mayo et al. [12] reported that ordinary travelling wave solutions exist for (7)
for radii above R̂ = 0.88 when β = 1 , and that the film becomes unstable to
free surface waves for smaller values of R̂. We expand on these results here.

In Figure 1 a comparison between the fluid profiles for β = −1, 0, 1 is shown
for the cylinder radii R̂ = 1.61 , 0.88 , 0.72 . In the top plot, corresponding
to R̂ = 1.61 , the fluid profiles for the three β cases are all quite similar,
indicating that the substrate curvature effect is small at this reasonably large
radius. Each of the three profiles has one main feature: a clear peak in
the fluid height at the fluid front. This is referred to as a capillary ridge,
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Figure 1: Two dimensional solutions of (7) for R̂ = 1.61 , 0.88 , 0.72 and
β = −1 (blue dotted), β = 0 (black solid) and β = 1 (red dashed). These
are each computed on a domain of 3501 nodes by allowing the fluid to evolve
to dimensionless time t = 22 .
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and its presence is known to be a necessary condition for the instability
of the flow [7]. In the middle plot, for the smaller radius R̂ = 0.88 , the
strengthening of the substrate curvature effect is evident as the three profiles
vary in shape. The profile for flow down the outside of the cylinder (β = 1)
possesses the largest capillary ridge, indicating the highest level of instability.
In contrast, the small ridge for flow on the inside (β = −1) shows a low level
of instability. The bottom plot, drawn for the radius R̂ = 0.72 , illustrates a
further destabilisation of the film down the outside of the cylinder (β = 1) in
response to high substrate curvature. Here we observe a free surface wave
instability which appears as a train of waves behind the leading capillary
ridge [9, 12]. On the other hand, flow down the inside (β = −1) becomes
even less unstable as substrate curvature increases, with the height of the
capillary ridge diminishing as R̂ decreases.

We now return to the full evolution equation (1) and simulate fingering
instabilities at the advancing contact line of the film. The gravity driven
process is inherently unstable, and so very small perturbations are imposed on
the initial contact line to encourage the growth of fingers. The axisymmetric
solution from (7) is taken as the base state for the unperturbed contact line,
and then random perturbations are placed in the manner described by Kondic
and Diez [7] to create the initial conditions for the following simulations.
Mayo et al. [12] showed that substrate curvature has an insignificant effect
on the flow for radii greater than R̂ = 2.56 . Therefore, we are motivated to
consider radii below this value in our numerical simulations.

In Figure 2 three dimensional simulations are shown for R̂ = 1.53 and
β = −1, 0, 1 . Each simulation was performed with the same initial condition
and on an equivalently sized domain with periodic conditions on the lateral
edges. They were allowed to evolve to dimensionless time t = 100 . For flow
down the outside of the cylinder (β = 1), the contour plot measuring h(θ, z)
shows a long finger with a capillary ridge at the tip (indicated by the lightest
shaded region). A finger is also present in the planar case with no substrate
curvature (β = 0), but is significantly shorter. For flow down the inside of a
cylinder (β = −1) there is only a slight perturbation visible at the contact
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Figure 2: Solutions of (1) for R̂ = 1.53 and β = −1, 0, 1 . Simulations evolved
until dimensionless time t = 100 on a periodic domain of 112, 894 nodes.
Grid spacing is ∆z = 0.05 , R̂∆θ ≈ 0.1.

line. The lack of a finger for β = −1 indicates that flow down the inside is
the least unstable to fingering of the three cases. A further reduction in the
cylinder radius below roughly R̂ = 1.53 results in a completely stable contact
line for flow down the inside of a cylinder (β = −1). In this case, all initial
perturbations decay in time and the flow quickly becomes axisymmetric.

An interesting result is that we are able to observe ‘nontrivial travelling waves’
in our three dimensional solutions for flow down the inside of a cylinder
(β = −1), as was documented for the analogous problem of flow down an
inclined plane [8]. These travelling waves occur when the fingers at the contact
line reach growth saturation, and the entire fingering pattern propagates at a
constant speed without changing shape. This is in contrast to flow down a
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vertical wall (β = 0), down the outside of a cylinder (β = 1), and down an
inverted plane, for which the length of the fingers continue to grow for all
time [7, 10, 12].

To illustrate these two features, Figure 3 shows the results of two simulations
for a cylinder of radius R̂ = 1.89 . The first row is for flow down the outside
of the cylinder (β = 1) and the second for flow down the inside (β = −1).
Solutions are shown at dimensionless times t = 140 , 220 , 300 and the same
initial condition and domain size were used for each case. In the first row the
finger on the outside of the cylinder continues to grow in length over the given
time period. Running the simulations up to t = 500 showed that this growth
continues. However, for flow down the inside of a cylinder, the second row
illustrates that the growth rate of the finger saturates some time after t = 140 ,
and the film forms a nontrivial travelling wave where the fluid front continues
to propagate down the cylinder wall with the finger in a steady formation
(recall that we are using a shifting computational window and so the values on
the z axes in Figure 3 are present to indicate the distance the fluid front has
moved over time). These nontrivial travelling waves become more difficult to
observe as R̂ increases (that is, as substrate curvature decreases) due to larger
initial growth rates of the perturbations. Kondic and Diez [8] suggested, for
their analogous problem of flow on an inclined plane, that growth saturation
will eventually occur as long as the plane is inclined less than α = π/2 .
Therefore, we may expect this phenomenon to occur in our simulations for
all finite R̂ while β = −1 .

Simulations of (1) were performed for a larger range of R̂ values than those
presented in this report. However, Figures 1–3 are sufficient to capture the
main results. For values of R̂ > 1.53 , the same number and placement of
fingers were consistently observed for the three cases β = −1, 0, 1 , suggesting
that the curvature has little effect on the preferred wavelength of the fingering
pattern. Only the growth rate of the fingers was seen to change, indicating
the difference in instability between the three cases. Linear stability analyses
quantify these growth rates and relate them to the size of the initial pertur-
bation [7, 10, 16]. While we presented simulations with only one finger, the
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number of fingers increases approximately linearly with cylinder radius [12, 16].
However, it becomes more difficult to observe the effect of substrate curvature
at larger radii. In summary, the two and three dimensional simulations both
suggest that substrate curvature has the effect of increasing instability for flow
down the outside of a cylinder, while for flow down the inside of a cylinder it
has a stabilising effect.

4 Discussion

Mayo et al. [12] presented two and three dimensional numerical simulations
for flow down the outside of a vertical cylinder. Good agreement was observed
between those results and both the experimental observations and linear
stability predictions of Smolka and SeGall [16]. Here we presented some
preliminary results for the complementary regime of unstable flow down the
inside of a vertical cylinder, which is analogous to the well studied problem
of flow down an inclined plane.

When compared to the (intermediate) problem of flow down a vertical plane,
the effect of substrate curvature on flow down the outside of a cylinder is to
increase the instability of the flow to small perturbations at the contact line.
For flow down the inside of the cylinder substrate curvature has the opposite
effect. These findings are evident in both two dimensional simulations of
the fluid profile and three dimensional simulations of the fingering patterns.
Further, the number and form of fingers in the contact line does not change
between the three cases; it is only their growth rates that differ. This effect is
magnified at small radii, but becomes insignificant when the radius becomes
reasonably large.

Our simulations demonstrate the existence of nontrivial travelling wave be-
haviour on the inside of a cylinder, in agreement with studies of flow down an
inclined plane. This behaviour is not observed for the more unstable regimes
of flow down a vertical plane or down the outside of the cylinder.
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Figure 3: Solutions of (1) for R̂ = 1.89 and β = 1 (first row) and β = −1
(second row). Simulations evolved until dimensionless time t = 300 on a
periodic domain of 306, 918 nodes. Grid spacing is ∆z = 0.05 , R̂∆θ ≈ 0.1.
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The adi method used to solve the fourth order evolution equation is a powerful
tool for producing efficient flow simulations. The non-iterative pseudolinear
scheme employed here factorised the problem into a family of smaller one
dimensional problems. At each time step, this required the solution of just
two linear pentadiagonal systems. The review by Witleski and Bowen [19]
offers several alternative adi methods, some of which are second order in
time. It may be worth investigating these for more accurate solutions of (1).
An adaptive time stepping scheme may be of further benefit.
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