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Abstract

We formulate a numerically efficient coupled ocean-atmosphere
model. It consists of a global atmosphere and a Pacific basin ocean,
with two dynamical levels in each component. The model has a realistic
climatology and displays El Niño–Southern oscillation variability at the
observed frequencies. In hindcasts over the period 1981 to 2000, the
model displays good skill out to seven months in forecasting the tropical
upper ocean temperatures and zonal current anomalies. The most
skilful forecasts occur for those initialised during June to November.
Skilful predictions for the atmospheric fields generally only extend
to one month, but can be as much as three months during major El
Niño–Southern oscillation events.
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1 Introduction

Coupled ocean-atmosphere variability in the Pacific Ocean hemisphere as-
sociated with the quasi-periodic phenomenon known as El Niño–Southern
oscillation (enso) is a major influence on global climate variations on seasonal
to interannual time-scales [1]. enso is associated with global and regional
scale atmospheric circulation [2, 3] and rainfall variability [4]. Many different
types of models of varying complexity have been proposed to model and/or
forecast the essential dynamics and thermodynamics of enso. These include
entirely statistical [5], dynamical prognostic ocean with diagnostic/statistical
atmosphere [6, 7, 8, 9] and entirely dynamical [10, 11, 12] models. The
models vary from low resolution models with fairly simple physics and re-
stricted domains [13] to comprehensive global coupled general circulation
models (cgcms). Palmer et al. [14] provided a description of models used in
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the demeter (development of a European multimodel ensemble system for
seasonal to interannual prediction).

Jin et al. [15] evaluated the current status of enso prediction in comprehensive
cgcms in the datasets of the appc/clipas (apec climate center/climate
prediction and its application to society [16]) and demeter projects. They
concluded that most of the models have problems in reproducing the mean
and mean annual cycle of the sea surface temperature (sst) over the period
1980 to 2001. Consequently, the interannual variability in the sst was not
well reproduced, with discrepancies becoming worse with increasing lead time.
They also found that these models performed best during the growth phase
of extreme enso events and not so well in the decay phase. The models had
little skill during enso-neutral periods. In line with the concept of a boreal
spring predictability barrier, they also found that the skill of the models
reduced more quickly with time for forecasts initiated during February or
May, when compared to those initiated in August or November.

In the last decade, a lot of effort has gone into the design of ensemble seasonal
prediction methods to improve dynamical forecasts of enso. Our aim in this
paper is to develop a computationally efficient coupled ocean-atmosphere
model of intermediate complexity, suitable for investigating different methods
of ensemble prediction initialisation, even for large ensemble sizes, in a
reasonable time and at low resolution. Here, we formulate the model and
outline its behaviour and predictive skill. In an accompanying paper [17], we
use the model to develop and test a new method of ensemble initialisation.

The plan of the article is as follows. In Section 2, the model formulation and
computational methods are discussed. In Section 3, the model climate and
variability is evaluated; in Section 4, the predictive skill in forecasting enso
variability is assessed. Our conclusions are in Section 5.
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2 Model details

The model outlined here has a global atmosphere coupled to a Pacific basin
ocean extending from 90◦S to 90◦N, as shown in Figure 1, and with no
through flow in the Southern Ocean. The resolution of both components
corresponds to a model grid of circa 2.3◦ latitude and 3.75◦ longitude. The
final choice of model parameters, for example, the diffusion and surface drag
coefficients, were determined from a parameter study to best simulate enso
variability.

2.1 Atmospheric model equations

The atmosphere in the model consists of two pressure levels, 250 hPa and
750 hPa. Prognostic equations are specified for both the streamfunction and
potential temperature at these levels, but the vertically averaged flow is
assumed to be non-divergent. Thus, there are five prognostic variables in
the model, ψ, τ, χ, θ and σ, representing the vertical average (or mean)
streamfunction, the shear streamfunction, the shear velocity potential (or the
lower level velocity potential), and the mean and shear potential temperature,
respectively. The governing equations are
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∂∇2χ
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is the Jacobian. Here, λ is longitude and µ is the sine of latitude. Topography
is incorporated in the term h = 2µgH/ (RTo) , and enters the atmospheric
component as a source of vorticity and divergence. Here, g = 9.8ms−2 is
gravity, H is the actual global topography, R = 287 JK−1 is the gas constant
for air, To = 273K is the horizontally averaged surface temperature, K =
2.3148×10−6 s−1 is a surface drag coefficient, K2 = 2.5×105m2s−1 is a diffusion
coefficient, a = 6.37× 106m is the radius of the earth, cp = 1004 JK−1kg−1

is the specific heat of dry air at constant pressure, and B = 0.124 is a
dimensionless constant. Convection is incorporated in the term −s∇2χ, with
s = QFq where q is the specific humidity at the lower level, and QF is an
effective convective heating parameter, here set to 1000K.

Radiative forcing of the general circulation is parameterised as a relaxation
of the mean and shear potential temperatures, θ and σ, respectively, to
their climatological annual cycle, θE and σE, for the period 1951–2000. The
relaxation coefficient α is set to 5.787 × 10−6 s−1. An additional heating
term Ha is related to the vertical heat flux between the ocean and atmosphere
and is described when we consider the ocean-atmosphere coupling.
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2.2 Oceanic model equations

The oceanic model is also formulated in terms of vorticity, divergence and
temperature, and assumes the Boussinesq approximation. It consists of two
vertical levels, at 50m and 150m depths, with an assumed non-divergence
level at 100m. An abyssal layer, with upper boundary at 250m, is connected
to the two levels through diffusion. An abyssal temperature of 287.5K is
assumed between 30◦S to 30◦N and a zonally symmetric temperature profile,
based on data from Levitus [18], is used outside this region. An apparent
ocean temperature (T − T∗o ) is used, relative to a reference temperature
T∗o = 283.5K, where T is the actual temperature. The equation of state used
is then ρ = ρo [1− αo (T − T∗o )] . Here, ρ is density, ρo = 1000 kgm−3 is a
reference density for water, and αo = 2 × 10−4K is the thermal expansion
coefficient for water. The ocean model is formulated for the five prognostic
variables ψo, τo, χo, θo and σo, representing the mean streamfunction, the
shear streamfunction, the lower level velocity potential, and the mean and
shear apparent temperature, respectively. The governing equations are
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Here, the ocean basin topography is ho and at the land-ocean boundary the
topographic height difference is 150m, K6 = 5 × 1025m6s−1 is a horizontal
diffusion coefficient, θao is the abyssal apparent temperature, ∆z = 50m is
half the depth between the two levels, po = 1000 hPa is the surface pressure
and Bo = α∆zg . Also, Ho represents a heating term that is related to the
vertical heat flux between the ocean and atmosphere.

2.3 Ocean-atmosphere coupling

The coupling between the ocean and atmosphere is through the surface
stresses and heat fluxes. Following Schopf and Suarez [13], the surface
wind stress is assumed to be proportional to the lower level velocity. In
the ocean mean and shear streamfunction, the impact of the wind stress
is poK∇2 (ψ− τ) / (4ρog∆z) ; a similar term −poK∇2χ/ (4ρog∆z) appears in
the divergence equation.

The surface heat flux Hθ between the atmosphere and the ocean is assumed
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to be Hθ = −γ (Ts − T1) [13], where Ts and T1 are the surface air temperature
and first level ocean temperature, respectively, and γ is a proportionality
coefficient, assumed constant and equal to 15Wm−1K−1 over the ocean basin.
Temperature Ts is linearly extrapolated from the air temperature at the two
levels using the logarithm of the atmospheric pressure [13]. Therefore,

Ts ≈ 0.986θ− 1.388σ , (12)

Hθ ≈ γ
(
0.986θ− 1.388σ− θo − σo −

√
2T∗o

)
, (13)

Ho =
Hθ

4ρo∆zco
, (14)

where co = 4× 103Jkg−1K−1 is the specific heat of water. In the case of the
atmosphere, the relaxation terms in equations (4)–(5) incorporate all the
sources of heating associated with the annual cycle of the climatological state,
including the surface heat flux. This annual cycle of climatological surface
heat flux is removed from Ho and only the remaining anomalous surface heat
flux is applied to the atmosphere. The anomalous heat flux is

∆Hθ ≈ −γ [0.986 (θ− θE) − 1.388 (σ− σE) − θo − σo − θSST ] . (15)

Here, θSST is the climatological annual cycle of the apparent observed sea-
suface temperature (sst) for the period 1981–2000, using the Reynolds sst
dataset [19]. The additional heating term in equation (4) is

Ha =
g∆Hθ

pop̄cp
, (16)

and p̄ = 0.797 .

2.4 Computational methods

All derivatives with respect to the vertical coordinate p (and z) are finite
differenced in the vertical, according to

∂ψ

∂p

∣∣∣∣
i

=
ψi−1 −ψi+1
pi−1 − pi+1

. (17)
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Time differencing uses the semi-implicit technique, allowing for a larger time
step,

∂ψ

∂t
=
ψτ +ψt−1

∆t
, (18)

where

ψτ =
ψt+1 +ψt−1

∆t
. (19)

Horizontally, the atmospheric and ocean fields are expanded in spherical
harmonics:

ψ(λ,µ, t) =
J∑

m=J

|m|+J∑
l=m

ψml (t)Pml (µ) eimλ , (20)

where Pml is the associated Legendre polynomial of the first kind. We assume
that ψ is real by taking complex conjugate of ψml to be defined by ψm∗

l =
−ψ−m

l . The truncation in equation (20) is rhomboidal 31. Spectral to grid
and grid to spectral transforms are used when coupling the atmosphere to
the ocean component. Formulated in this way, the model conserves energy
and entropy and can be run at very low viscosity even at low resolution; this
is in contrast to many more complex models.

3 Model climate and variability

The model equations were integrated for 80 years from rest with the atmo-
sphere and oceanic circulation spun up and allowed to equilibrate over the
first five years. The model time step is 20 minutes, to avoid computational
instability, and one year of simulation takes about 20 minutes of cpu time.
Figure 1 shows the annual mean climatology over the last 75 years for the
oceanic (a) 150m zonal velocity and (b) 50m temperature. The model has a
realistic equatorial westerly current of about 1.2ms−1, recirculating easterly
flow in the eastern Pacific at 50m (not shown) and western boundary currents.
Similarly, the 50m temperature is well represented in both magnitude and
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general distribution. The model also captures the observed climatology of the
annual cycle of the atmospheric circulation. This is illustrated for the 250 hPa
zonal wind during January and July in Figure 2.

The model also has quite realistic enso-like variability. Figure 3 shows
the 50m ocean temperature anomalies averaged over 5◦S to 5◦N for the
last 70 years of integration. Anomalous fluctuations between −4K to +4K
occur periodically throughout the 70 years, with the largest magitude in the
eastern Pacific. To investigate the range of frequencies in these fluctuations,
we performed a wavelet analysis [20] using an enso index defined as the
area averaged 50m ocean temperature anomaly between 160◦W to 80◦W and
5◦S to 5◦N. The result is shown in Figure 4 for frequency (in units per month)
versus year. Clearly, the model displays variability at different time scales
over the period, including in the two to three year, four to five year, seven to
eight year and decadal ranges.

To investigate the dominant modes of variability of the 50m temperature
variability, we performed a principal oscillation pattern (pop) analysis [21].
Figure 5 shows the imaginary and real parts of a pop with period 28 months.
The imaginary and real parts are a quarter period out of phase and are
remarkably similar to the first and second empirical orthogonal functions
(eofs) [22] (not shown) which explains 26.9% and 10.9% of the intermonth
variance, respectively, in the 50m ocean temperature. The imaginary part
(or first eof) has enso characteristics with large (positive) weighting along
the equator near 140◦W; off the equator and in the west Pacific there are
negative loadings. The real part (or second eof) has a tri-pole structure with
largest magnitude near the dateline. Taken together, the real and imaginary
eof describe the evolution of the temperature anomaly over the life cycle of
the mode.
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Figure 2: Atmosphere climatology for 250 hPa zonal velocity during (a) Jan-
uary and (b) July.
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Figure 3: Evolution of 50m ocean temperature anomalies averaged over
5◦S to 5◦N.



4 Model predictive skill C47

Figure 4: Wavelet analysis using an enso index of 50m ocean temperature.

4 Model predictive skill

The model has a good climatology and enso-like variability, so it is interesting
to evaluate whether it has any predictive skill in forecasting the variability and
regime transitions associated with enso, especially over the tropical Pacific.
For this purpose, twelve month forecasts have been initialised each month for
the period January 1981 to December 2000. These forecasts are initialised
from an analysis run where the model’s ocean temperature at 50m and 150m
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Figure 5: The (a) imaginary and (b) real components of a propagating
model enso mode (pop) associated with the dominant mode of 50m ocean
temperature variability.
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and surface wind stress anomalies are nudged to the observed in the following
manner:

∆fnudge = (1−ω)∆fmodel +ω∆fobs . (21)

Here, ∆fmodel, ∆fobs, ∆fnudge represent the model, observed and nudged anoma-
lies, and ω is some weight (taken to be 0.5 in the tropics and 0.75 in the
extratropics).

The focus is mainly on the model’s ability to forecast the 50m ocean tem-
perature and zonal velocity over the tropical domain 130◦E to 80◦W and
10◦S to 10◦N. Figure 6(a,b) shows the anomaly correlation pattern (apc) for
the ocean temperature and zonal velocity, respectively, while Figure 6(c,d)
show the corresponding area averaged root-mean-square (rms) error for each
field. The model is able to capture the horizontal structure of the temperature
and zonal velocity over this period. Thus, for example, the model forecasts
for these fields have apcs greater than or equal to 0.6 out to seven months
during the major 1982/83 and 1997/98 El Niños and the 1988/89 La Niña,
once the ocean anomaly is in the rapidly growing phase. During these major
transitions, the model also displays quite large error growth, see Figure 6(c,d),
prior to the establishment of the event. Generally the largest rms errors
occur for the forecasts initiated between January and May, while the forecasts
initiated between June and November have the largest apc with skill out to
seven months. For the weaker El Niño events (1986/87, 1991/92, 1994/95)
and La Niña events (1984/85, 1995/96, 1999/2000), the model displays good
skill (apc > 0.6) out to five months ahead.

The skill in forecasting the atmospheric fields (not shown) is mainly limited
to the first month, although during the major enso events good skill can be
extended out to three months.
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Figure 6: The anomaly pattern correlation and root mean square error;
for forecasts of 50m ocean temperature, (a) and (c); and zonal velocity,
(b) and (d).
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5 Conclusions

We formulated a numerically efficient and energy conserving coupled ocean-
atmosphere model with just two levels, and with ten prognostic equations
describing the dynamics and thermodynamics of the coupled system. While
the atmosphere is global, the ocean consists of a hemispheric Pacific basin.
As a low resolution model, it has a good climatology and variability in both
the ocean and atmosphere. In particular, it displays enso-like variability
over periods associated with this major coupled variability over the Pacific
Ocean, comparable to more complex and higher resoution models. The model
also has good forecast skill, especially for the 50m ocean temperature and
zonal velocity, with skill out to seven months during major enso events.
Being a low resolution model, it is very efficient and economical to run,
completing multi-decadal simulations or forecasts at the rate of 20 minutes of
cpu per year of simulation. This is not possible with more complex and higher
resolution models and makes the model introduced here an ideal research
tool for testing out new ideas, for example, in developing new strategies for
ensemble seasonal prediction.
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