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Abstract

We present a finite element method using spherical splines to solve
the shallow water equations on a sphere involving satellite data. We
compare the proposed method with a meshless method using radial
basis functions. The use of either radial basis functions or spherical
splines leads to ill-conditioned systems of linear equations. To accelerate
the solution process we use additive Schwarz and alternate triangular
preconditioners. Some numerical experiments are presented to show
the effectiveness of both preconditioners.
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1 Introduction

An accurate weather prediction is very important for our society. It affects
various industries such as agriculture, transportation and civil safety. Global
weather prediction models are time consuming because high accuracy is
required to give correct forecasts. Hence it is important to develop new
efficient numerical methods. Before facing real life problems these methods
should be tested on simplified models. One such model is the shallow water
model [19]. The shallow water equations (swes) are a system of partial
differential equations (pdes) describing the water flow in ocean currents,
coastal areas and river channels. The main property of this system is that the
vertical scale is much smaller than the horizontal scale. This property allows
one to average out the vertical components. In this article we use spherical



1 Introduction C414

splines and radial basis functions as approximate solutions of the swes on
the unit sphere.

In the study of global atmospheric behaviour it is critical to solve pdes on a
sphere as this models the Earth’s surface. When the given data (that is, initial
conditions) involve scattered data, radial basis functions (rbfs) are especially
suitable to approximate the solutions of the pdes as they do not require any
mesh generation. Recently a collocation method using rbfs was proposed
for the spherical swes [5]. Another possible way to deal with scattered
data is to use spherical splines [1, 3] (in the sense of Schumaker). Pham et
al. [15] designed a Galerkin method using spherical splines to approximate
the solutions of pseudodifferential equations on the unit sphere.

In this article the Galerkin formulation is used to discretise the spherical swes
in space. To advance the resulting systems of ordinary differential equations
(odes) in time a standard leap-frog scheme with implicit viscosity terms is
used. In the Galerkin formulation, we propose two different finite dimensional
spaces which are defined respectively by rbfs and spherical splines. This
results in two different solution processes, one is a meshless method and the
other is a finite element method. The resulting systems of linear equations are
symmetric and positive definite, and are solved with the conjugate gradient
method.

Whether rbfs or spherical splines are used to define the finite dimensional
space, the resulting system is ill-conditioned. Hence preconditioners are needed
to overcome this problem. Recently additive Schwarz preconditioners were
used to solve pseudodifferential equations on the unit sphere with rbfs [12, 18]
and with spherical splines [14, 16]. Another kind of preconditioner, the
alternate triangular preconditioner, was proposed by Samarskii [17] to solve
the Poisson equation with a finite difference method on the unit square. In
this article we study the use of these preconditioners for the swes on the unit
sphere. Some numerical experiments are presented to show the effectiveness
of both preconditioners.



2 Spherical shallow water problem C415

2 Spherical shallow water problem

The viscous swes on the rotating unit sphere S2 in Cartesian coordinates
are [19]

Vt + Px
[
(V · ∇̂)V + fx×V + g∇̂ξ− ν∇2sV

]
= 0 ,

ξt + V · ∇̂ξ+ ξ∇̂ ·V − ν∇2sξ = 0 , (1)

where all terms are defined in Table 1 and with initial conditions

V( · , 0) = V0 and ξ( · , 0) = ξ0 . (2)

The diffusive terms (those involving ν) are added to both equations of motion
and the continuity equation to prevent spurious accumulation of energy and
entropy at the model grid scale [7, 6, 13, 19]. The projection operator Px is
used to limit the computation on the surface of the sphere. In the shallow
water model the velocity vector is tangential to the surface of the sphere S2
so PxV = V [19]. Also, Px(x×V) = x×V and Px∇̂ξ = ∇̂ξ .

A weak formulation for (1) and (2) is to find the height ξ( · , t) ∈ H1 and
velocity V( · , t) ∈ H1 for all t ∈ [0, T ] such that for all w ∈ H1 , w ∈ H1 and
t ∈ [0, T ]

〈Vt,w〉+ ν〈∇s(PxV),∇s(Pxw)〉 =− 〈Px(V · ∇̂)V,w〉
− 〈fx×V,w〉− g〈∇̂ξ,w〉 , (3)

〈ξt,w〉+ ν〈∇sξ,∇sw〉 =− 〈V · ∇̂ξ,w〉− 〈ξ∇̂ ·V,w〉 ,

with the initial conditions

〈V( · , 0),w〉 = 〈V0,w〉 and 〈ξ( · , 0),w〉 = 〈ξ0,w〉 . (4)

Here H1 is the usual Sobolev space on the unit sphere S2 and 〈·, ·〉 is the
corresponding inner product. The bold font is used for spaces of vector-valued
functions, whereas usual font is used for spaces of scalar-valued functions.
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Table 1: Define the notation in terms of Cartesian coordinates x =
r cos θ cosϕ , y = r cos θ sinϕ , z = r sin θ , and projection operator row vec-
tors px = [1−x2,−xy,−xz] , py = [−xy, 1−y2,−yz] , pz = [−xz,−yz, 1−z2] .

x := [x,y, z]T position vector,
‖x‖e := r =

√
x2 + y2 + z2 Euclidean norm of x

S2 := {x : ‖x‖e = 1} unit sphere centred at origin,
V := V(x, t) := (U,V ,W)T velocity in Cartesian coordinates,
ξ := ξ(x, t) height field,
Ω := constant > 0 rotation rate of the Earth,
f := f(z) := 2Ωz Coriolis parameter,
g := constant > 0 gravitational constant,
ν := constant > 0 viscosity of the fluid,
Px := [px,py,pz]T projection operator matrix,

∇ :=
[
∂
∂x
, ∂
∂y
, ∂
∂z

]T
Cartesian gradient operator,

∇̂ := Px∇ Cartesian surface gradient operator,
∇s :=

[
∂
∂θ
, 1

cos θ
∂
∂ϕ

]T spherical surface gradient operator.

3 Galerkin equations

Let us denote by V a finite dimensional subspace of H1 and by {B1, . . . ,BM} a
basis for V. A Galerkin formulation for (3) and (4) is to find ξh( · , t) ∈ V and
Vh( · , t) ∈ V for all t ∈ [0, T ] such that for all w ∈ V, w ∈ V and t ∈ [0, T ]

〈Vh,t,w〉+ ν〈∇s(PxVh),∇s(Pxw)〉 =− 〈Px(Vh · ∇̂)Vh,w〉
− 〈fx×Vh,w〉− g〈∇̂ξh,w〉 , (5)

〈ξh,t,w〉+ ν〈∇sξh,∇sw〉 =− 〈Vh · ∇̂ξh,w〉− 〈ξh∇̂ ·Vh,w〉 ,

with the initial conditions

〈Vh( · , 0),w〉 = 〈V0,w〉 and 〈ξh( · , 0),w〉 = 〈ξ0,w〉 . (6)
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Let us introduce the coefficient vectors cV(t) := [cV
1 (t), . . . , cV

M(t)]
T and

cξ(t) := [cξ1(t), . . . , c
ξ
M(t)]

T . The finite element approximation of the velocity
and the height are, respectively,

Vh(x, t) =
M∑
i=1

cV
i (t)Bi(x) and ξh(x, t) =

M∑
i=1

cξi (t)Bi(x) .

By choosing w and w in (5) to be Bj = (Bj,Bj,Bj)T and Bj, respectively, we
obtain the following systems of odes:

M
dcV

dt
+ νScV = FV and M

dcξ

dt
+ νScξ = Fξ . (7)

Here M = (Mij) with Mij = 〈Bi,Bj〉 , S = (Sij) with Sij = 〈∇sBi,∇sBj〉 ,

M =

M 0 0
0 M 0
0 0 M

 and S =

SU 0 0
0 SV 0
0 0 SW

 ,

with

SUij = 〈∇s(pxBi),∇s(pxBj)〉 , SVij = 〈∇s(pyBi),∇s(pyBj)〉 ,
and SWij = 〈∇s(pzBi),∇s(pzBj)〉 .

The right hand sides of (7) are FV = (FU,FV ,FW)T , with components

FUi = −〈px(Vh · ∇̂)Vh,Bi〉− 〈f(yWh − zVh),Bi〉− g〈px∇ξh,Bi〉 ,
FVi = −〈py(Vh · ∇̂)Vh,Bi〉− 〈f(zUh − xWh),Bi〉− g〈py∇ξh,Bi〉 ,
FWi = −〈pz(Vh · ∇̂)Vh,Bi〉− 〈f(xVh − yUh),Bi〉− g〈pz∇ξh,Bi〉 ,

and
Fξi = −〈Vh · ∇̂ξh,Bi〉− 〈ξh∇̂ ·Vh,Bi〉 .



4 Finite dimensional subspaces C418

Let IN := {t0, t1, . . . , tN} be a partition of the interval [0, T ] where elements of
partition are given by tn := nk with n = 0, 1 . . . ,N , and k := T/N is a time
step. Let

Vn
h(x) = Vh(x, tn) and ξnh(x) = ξh(x, tn) ,

and let us denote the corresponding coefficient vectors as cV,n and cξ,n,
respectively. To discretise the systems of odes (7) in time, we use a standard
leap-frog scheme with semi-implicit viscosity terms. Hence the time derivatives
are approximated by central differences, the right hand sides are treated
explicitly while the terms involving stiffness matrices S and S are treated
semi-implicitly. This leads us to the following systems of linear equations:

M

[
cV,n+1 − cV,n−1

2k

]
+
ν

2
ScV,n+1 = FV,n −

ν

2
ScV,n−1 ,

M
[
cξ,n+1 − cξ,n−1

2k

]
+
ν

2
Scξ,n+1 = Fξ,n −

ν

2
Scξ,n−1 ,

which are rewritten as

AcV,n+1 = McV,n−1 + 2kFV,n − kνScV,n−1 , (8)
Acξ,n+1 = Mcξ,n−1 + 2kFξ,n − kνScξ,n−1, (9)

where A = M+ kνS and A = M + kνS.

4 Finite dimensional subspaces

We now introduce finite dimensional spaces V defined by both spherical splines
and rbfs. We denote by X a set of points on S2 :

X := {x1, . . . ,xM} ⊆ S2 . (10)
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4.1 Spherical splines

Following Schumaker [1] we introduce the space of spherical splines. Given
a set of linearly independent vectors e1, e2, e3 ∈ R3 , any vector e ∈ R3 is
uniquely represented as e = b1e1+b2e2+b3e3 . The quantities b1, b2 and b3,
being linear homogeneous functions of e, are called the trihedral coordinates
of e with respect to e1, e2 and e3. The associated trihedron with the vertices e1,
e2 and e3 is the set

τ := {e ∈ R3 : b1(e),b2(e),b3(e) > 0} . (11)

Given a non-negative integer d, the functions

Bτ,dijk (e) :=
d!

i!j!k!
bi1b

j
2b
k
3 for i+ j+ k = d ,

are called the homogeneous Bernstein basis polynomials of degree d defined
on τ. The functions Bτ,dijk are linearly independent and span the

(
d+2
2

)
di-

mensional space Hd of homogeneous polynomials of degree d. A func-
tion pτ(e) =

∑
i+j+k=d c

τ
ijkB

τ,d
ijk (e) , with c

τ
ijk ∈ R , is called a homogeneous

Bernstein–Bézier (hbb) polynomial of degree d.

Let τ be a trihedron as in (11). Then the set τ ∩ S2 is a spherical triangle
(henceforth we call it just triangle and refer to it as τ). The intersection of a
spherical triangle τ and the plane passing through the origin and two vertices
of τ will be called an edge of τ. Now we call a spherical Bernstein–Bézier
(sbb) polynomial the restriction to the sphere S2 of an hbb polynomial. We
write Pd for Hd restricted to the sphere S2.

Recalling (10), let
∆h := {τi}

T
i=1 (12)

be a triangulation of S2 generated from the set X, that is each τi is a spherical
triangle with vertices as elements of X such that S2 =

⋃
i τ̄i and that any two

triangles intersect only at a common vertex or a common edge. Let d > 1 be
an integer. Then we define

Sh := {s ∈ C(S2) : s|τi ∈ Pd, i = 1, . . . ,T} , (13)
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which is called the space of spherical splines of degree d.

The meshsize h of the triangulation ∆h is defined as follows: for any spherical
triangle τ ∈ ∆h , we denote by |τ| the diameter of the smallest spherical
cap containing τ. We define |∆h| := max{|τ| : τ ∈ ∆h} and the meshsize
h := tan(|∆h|/2) . We assume that the triangulation ∆h is quasi-uniform and
regular. Hence there exist positive constants β > 1 and γ < 1 such that

γ|∆| 6 |τ| 6 βρτ , for all τ ∈ ∆h ,

where ρτ is the diameter of the largest spherical cap inside τ.

4.2 Radial basis functions

Let us now introduce the space of rbfs SφX . A real valued function in the form
Φ(x) = φ(r) , where r = ‖x‖e, whose values depend only on the distance from
the origin is called a radial basis function. Some commonly used rbfs are
multiquadric φ(r) =

√
1+ (εr)2 , inverse quadratic φ(r) = [1+ (εr)2]−1 and

Gaussian φ(r) = exp[−(εr)2] . A function in the form Φi(x) = φ(‖x − xi‖e)
is called a radial basis function corresponding to the node xi ∈ X for i =
1, . . . ,M . Our finite dimensional space is then

SφX := span{Φ1, . . . ,ΦM} .

In our numerical simulations we use multiquadric radial basis functions with
ε = 3.25 , as those used by Flyer [5].

5 Preconditioners

The matrices A and A in (8)–(9) are symmetric and positive definite for both
methods using spherical splines and rbfs. We use the conjugate gradient (cg)
method to solve equations (8)–(9). If the condition numbers of these matrices
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are large, then the cg method converges slowly. To accelerate the convergence
of the cg method we apply two different preconditioners, namely the additive
Schwarz preconditioner and the alternate triangular preconditioner, which we
introduce in the next two subsections.

5.1 Additive Schwarz preconditioner

To obtain the solution of (8)–(9) with the additive Schwarz method we solve
the problems of smaller sizes independently. We employ this preconditioner
only when V = Sh . We denote V = Sh and decompose it into a sum of
subspaces so that

V = V0 + · · ·+ VJ . (14)
We define the projection Pj : V → Vj , for j = 0, . . . , J, by

a(Pjv,w) = a(v,w) for all v ∈ V and for all w ∈ Vj ,
where the bilinear form a is a(v,w) = 〈v,w〉+2kν〈∇sv,∇sw〉 . The additive
Schwarz operator is then P := P0 + · · · + PJ . The solution of (8)–(9) is
equivalent to the solution of the system Puh = g , where g =

∑J
j=0 gj and

gj ∈ Vj is the solution of

a(gj,w) = 〈F,w〉 for all w ∈ Vj .

To define Vj we first define a decomposition of S2. We recall the definitions
(10), (12) and (13) for X, ∆h and Sh. We denote by Y some subset of X.
Let ∆H be a triangulation built on the set Y with the property H > h

and let SH be the space of spherical splines defined on ∆H. To obtain the
decomposition (14) we first define a coarse space V0 := ĨhSH , where Ĩh is a
quasi-interpolant operator [11, p. 425]. For each τHj ∈ ∆H where j = 1, . . . , J
we define the corresponding subdomain as

Ωj =
⋃

{τ ∈ ∆h : τ̄ ∩ τ̄Hj 6= ∅} .

Now we define the subspace Vj as a span of basis functions whose supports
are subsets of Ωj.
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5.2 Alternate triangular preconditioner

In the alternate triangular preconditioning [9] we decompose the matrix A of
the system of the linear equations in the form

Ac = F (15)

into a sum of two matrices

A = A1 + A2 , A∗
1 = A2 ,

where A1 and A2 are the lower and upper triangles of the matrix A and
A∗
1 is the conjugate transpose matrix of the matrix A1. Then we define the

preconditioner

C(ω) = [(I +ωA1)(I +ωA2)]
−1 , ω > 0 , (16)

where I is the identity operator. We employ the alternate triangular pre-
conditioner for both cases when V = Sh and V = SφX . Let us denote by
δ1 and δ2 the minimal and maximal eigenvalues of the matrix A, respectively.
It was proved [8] that the condition number of the matrix C(ω)A is bounded
by η(ω) = 2ωδ1/(1 +ωδ1 +ω

2δ1δ2/4) . The parameter ω is then chosen
to minimise the function η(ω) . It was proved [9] that the minimiser is
ω∗ = 2/

√
δ1δ2 . Therefore, we choose C(ω∗) as the optimal preconditioner.

However, finding the eigenvalues δ1 and δ2 is a more complicated problem
than solving the original problem (15). Konovalov [8] showed that if {cl} are
the iterates obtained by solving (15) with the steepest descend method and if
ω̂l = ‖cl‖e/‖A2cl‖e , then κ(C(ω̂l)A) < η(ω∗) for all l, where κ(C(ω̂l)A) is
the condition number of the matrix C(ω̂l)A . Konovalov [10] also proved that
the sequence {ω̂l} converges at a high rate. Numerical experiments show that
the optimal value for κ(C(ω̂l)A) is κ(C(ωopt)A) , where ωopt = liml→∞ ω̂l .
The obtained value ωopt is then used to solve (15) with the preconditioned
conjugate gradient method with the optimal preconditioner C(ωopt) . Table 2
gives a pseudocode for the proposed method to find ωopt . In this pseudocode
the iteration stops when there is convergence of {ω̂l} , not of {cl} .
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Table 2: A pseudocode of 12 steps for determining ωopt .
(1) ω̂ = 1, ω̂old = 0, c = F (7) w = (I + ω̂A2)

−1w̄
(2) while |ω̂− ω̂old| > tol (8) τ = 〈r,w〉e/〈Aw,w〉e
(3) r = F − Ac (9) c = c + τ〈r,w〉ew
(4) ω̂old = ω̂ (10) iter = iter+ 1
(5) ω̂ = ‖c‖e/‖A2c‖e (11) end while
(6) w̄ = (I + ω̂A1)

−1r (12) ωopt = ω̂

6 Numerical experiments

In this section we compare the method using spherical splines and the method
using rbfs for solving the spherical swes problem. We also compute the
condition numbers of the system (8)–(9) for both methods and show the effec-
tiveness of the additive Schwarz and the alternate triangular preconditioners.
In our experiments we use data points from nasa’s satellite magsat to define
the set of points X. The initial conditions for the system (1)–(2) are proposed
by Galewsky et al. [6].

In Table 3 we present the relative L2 error of the height ξ for the method using
rbfs and the method using spherical splines with piecewise linear, quadratic
and cubic splines. The degree of freedom (dof) for spherical splines is given
by the number of domain points D := 2+ d2(M− 2) , where d is the degree
of splines and M is given by (10) [2]. On the problems with the same degrees
of freedom, quadratic spherical splines give better approximation than rbfs.
Usually for the same degrees of freedom we expect higher accuracy when
using splines of higher degrees. However, in the case of homogeneous spherical
splines, the spline spaces of even and odd degrees have only zero function
in common. Therefore, in such spaces we cannot reproduce polynomials of
degree m 6 d unless m ≡ d mod 2 [4]. This is the reason why we have
better results for quadratic splines compared to cubic splines in Table 3.

In Tables 4–7 we show the condition numbers and the number of iterations
for the cg method to converge for the system (8)–(9) and the preconditioned
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Table 3: Relative L2 error of the height ξ
dof 101 204 414 836 1635 3250

rbfs 1.5e−2 3.6e−3 6.3e−4 1.8e−4 2.2e−5 1.6e−5
linear 3.6e−2 1.3e−2 8.4e−3 4.4e−3 2.2e−3 1.1e−3
dof 94 194 398 810 1650 3338

quad. 4.3e−3 1.1e−3 2.3e−4 4.7e−5 1.6e−5 5.3e−6
dof 92 209 434 893 1820 3710

cubic 4.2e−2 8.8e−3 1.6e−3 4.7e−4 8.7e−5 2.1e−5

Table 4: Condition numbers and number of iterations for multiquadric rbfs
dof 101 204 414 836 1635 3250

κ 7.0e1 6.5e2 2.1e4 1.0e6 3.2e8 1.9e10
N 69 152 484 2060 15291 114891

κ1 1.1e1 6.7e1 7.2e2 6.9e4 8.3e5 3.1e8
N1 27 60 156 625 3834 35918

systems. We denote by κ the condition number of the unpreconditioned
system, by κ1 the condition number of the preconditioned system with the
alternate triangular preconditioner and by κ2 the condition number of the
preconditioned system with the additive Schwarz preconditioners. We denote
by N the number of iterations for the cg method to converge for the unpre-
conditioned systems (8)–(9), and by N1 and N2 the corresponding numbers
of iterations for the systems with alternate triangular and additive Schwarz
preconditioner, respectively. The matrices in (8)–(9) for the method using
rbfs are much more ill-conditioned than those for the method using spherical
splines. As expected, the condition numbers of preconditioned systems are
smaller than those for unpreconditioned systems. The convergence rate of
the preconditioned cg method is higher in all cases.

Acknowledgements The first author is supported by the University Inter-
national Postgraduate Award offered by the University of New South Wales
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Table 5: Condition numbers and number of iterations for piecewise linear
splines

dof 101 204 414 836 1635 3250

κ 1.9e1 4.0e1 7.3e1 2.8e2 6.0e2 1.1e3
N 64 92 128 184 254 353

κ1 6.9e0 1.3e1 3.6e1 8.4e1 2.2e2 5.6e2
N1 24 31 75 121 165 197

κ2 1.1e1 2.9e1 4.1e1 4.3e1 4.7e1 5.1e1
N2 51 67 95 113 133 134

Table 6: Condition numbers and number of iterations for piecewise quadratic
splines

dof 94 194 398 810 1635 3338

κ 1.1e1 2.4e1 4.7e1 1.8e2 2.0e2 7.6e2
N 56 78 106 158 206 296

κ1 3.1e0 4.2e0 9.6e0 1.9e1 4.7e1 1.2e2
N1 10 16 25 45 121 168

κ2 9.2e0 1.9e1 3.4e1 4.0e1 4.4e1 4.8e1
N2 42 54 93 110 125 132

Table 7: Condition numbers and number of iterations for piecewise cubic
splines

dof 92 209 434 893 1820 3710

κ 3.3e1 2.4e1 4.3e1 1.4e2 1.7e2 4.7e2
N 80 89 110 146 200 274

κ1 5.2e0 1.5e1 3.4e1 4.7e1 9.5e1 2.0e2
N1 19 54 98 107 106 171

κ2 2.8e1 1.5e1 3.1e1 1.0e2 1.4e2 1.6e2
N2 67 59 69 112 121 148



References C426

and the csiro anziam student support scheme. Both authors are supported
by the arc grant DP120101886.

References

[1] P. Alfeld, M. Neamtu and L. L. Schumaker. Bernstein–Bézier
polynomials on spheres and sphere-like surfaces. Comput. Aided Geom.
Design, 13:333–349, 1996. doi:10.1016/0167-8396(95)00030-5 C414,
C419

[2] P. Alfeld, M. Neamtu and L. L. Schumaker. Dimension and local bases
of homogeneous spline spaces. SIAM J. Math. Anal., 27:1482–1501,
1996. doi:10.1137/S0036141094276275 C423

[3] P. Alfeld, M. Neamtu and L. L. Schumaker. Fitting scattered data on
sphere-like surfaces using spherical splines. J. Comput. Appl. Math.,
73:5–43, 1996. doi:10.1016/0377-0427(96)00034-9 C414

[4] V. Baramidze, M. J. Lai and C. K. Shumaker. Spherical splines for data
interpolation and fitting. SIAM J. Sci. Comput., 28:241–259, 2006.
doi:10.1137/040620722 C423

[5] N. Flyer and G. B. Wright. A radial basis function method for the
shallow water equations on a sphere. Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci., 465:1949–1976, 2009. doi:10.1098/rspa.2009.0033 C414,
C420

[6] J. Galewsky, R. K. Scott and L. M. Polvani. An initial-value problem for
testing numerical models of the global shallow-water equations. Tellus
A, 56:429–440, 2004. doi:10.1111/j.1600-0870.2004.00071.x C415, C423

[7] A. Gelb and J. P. Gleeson. Spectral viscosity for shallow water
equations in spherical geometry. Mon. Wea. Rev., 129:2346–2360, 2001.
doi:10.1175/1520-0493(2001)129<2346:SVFSWE>2.0.CO;2 C415

http://dx.doi.org/10.1016/0167-8396(95)00030-5
http://dx.doi.org/10.1137/S0036141094276275
http://dx.doi.org/10.1016/0377-0427(96)00034-9
http://dx.doi.org/10.1137/040620722
http://dx.doi.org/10.1098/rspa.2009.0033
http://dx.doi.org/10.1111/j.1600-0870.2004.00071.x
http://dx.doi.org/10.1175/1520-0493(2001)129<2346:SVFSWE>2.0.CO;2


References C427

[8] A. N. Konovalov. To the theory of the alternating triangle iteration
method. Siberian Math. J., 43:439-457, 2002.
doi:10.1023/A:1015455317080 C422

[9] A. N. Konovalov. The steepest descent method with an adaptive
alternating triangular preconditioner. Diff. Equat., 40:1018-1028, 2004.
doi:10.1023/B:DIEQ.0000047032.23099.e3 C422

[10] A. N. Konovalov. Optimal adaptive preconditioners in static problems
of the linear theory of elasticity. Diff. Equat., 45:1044-1052, 2009.
doi:10.1134/S0012266109070118 C422

[11] M. J. Lai and L. L. Schumaker. Spline Functions on Triangulations.
Number v. 13 in Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, 2007. C421

[12] Q. T. Le Gia, I. H. Sloan and T. Tran. Overlapping additive Schwarz
preconditioners for elliptic PDEs on the unit sphere. Math. Comp.,
78:79–101, 2009. http://www.ams.org/journals/mcom/
2009-78-265/S0025-5718-08-02150-9/ C414

[13] R. D. Nair. Diffusion experiments with a global discontinuous galerkin
shallow-water model. Mon. Wea. Rev., 137:3339–3350, 2009.
doi:10.1175/2009MWR2843.1 C415

[14] T. D. Pham and T. Tran. A domain decomposition method for solving
the hypersingular integral equation on the sphere with spherical splines.
Numer. Math., 120:117–151, 2012. doi:10.1007/s00211-011-0404-1 C414

[15] T. D. Pham, T. Tran and A. Chernov. Pseudodifferential equations on
the sphere with spherical splines. Math. Models Methods Appl. Sci.,
21:1933–1959, 2011. doi:10.1142/S021820251100560X C414

[16] T. D. Pham, T. Tran and S. Crothers. An overlapping additive Schwarz
preconditioner for the Laplace–Beltrami equation using spherical splines.
Adv. Comput. Math., 37:93–121, 2012. doi:10.1007/s10444-011-9200-9
C414

http://dx.doi.org/10.1023/A:1015455317080
http://dx.doi.org/10.1023/B:DIEQ.0000047032.23099.e3
http://dx.doi.org/10.1134/S0012266109070118
http://www.ams.org/journals/mcom/2009-78-265/S0025-5718-08-02150-9/
http://www.ams.org/journals/mcom/2009-78-265/S0025-5718-08-02150-9/
http://dx.doi.org/10.1175/2009MWR2843.1
http://dx.doi.org/10.1007/s00211-011-0404-1
http://dx.doi.org/10.1142/S021820251100560X
http://dx.doi.org/10.1007/s10444-011-9200-9


References C428

[17] A. A. Samarskii and E. S. Nikolaev. Numerical methods for grid
equations. Vol. II. Birkhäuser Verlag, Basel, 1989. Iterative methods,
Translated from the Russian and with a note by Stephen G. Nash. C414

[18] T. Tran, Q. T. Le Gia, I. H. Sloan and E. P. Stephan. Preconditioners
for pseudodifferential equations on the sphere with radial basis functions.
Numer. Math., 115:141–163, 2010. doi:10.1007/s00211-009-0269-8 C414

[19] D. L. Williamson, J. B. Drake and P. N. Swarztrauber. The Cartesian
method for solving partial differential equations in spherical geometry.
Dynamics of Atmospheres and Oceans, 27:679–706, 1997.
doi:10.1016/S0377-0265(97)00038-9 C413, C415

Author addresses

1. I. Tregubov, School of Mathematics and Statistics, University of New
South Wales, New South Wales 2052, Australia.
mailto:i.tregubov@student.unsw.edu.au

2. T. Tran, School of Mathematics and Statistics, University of New
South Wales, New South Wales 2052, Australia.
mailto:t.tran@unsw.edu.au

http://dx.doi.org/10.1007/s00211-009-0269-8
http://dx.doi.org/10.1016/S0377-0265(97)00038-9
mailto:i.tregubov@student.unsw.edu.au
mailto:t.tran@unsw.edu.au

	Introduction
	Spherical shallow water problem
	Galerkin equations
	Finite dimensional subspaces
	Spherical splines
	Radial basis functions

	Preconditioners
	Additive Schwarz preconditioner
	Alternate triangular preconditioner

	Numerical experiments
	References

