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Abstract

We numerically derive the properties of reaction fronts arising in
a pre-mixed one dimensional two staged non-adiabatic competitive
exothermic-endothermic reaction scheme where both reaction pathways
compete for the same fuel. We utilise Flexpde and the method of lines
to obtain numerical solutions for properties such as the front speed and
stability over a range of parameter values such as the Lewis number and
the ratios of enthalpies and activation energies. Steady and pulsating
speeds are demonstrated for specific regions of the parameter space.
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We also show that in some circumstances there exists a chaotic regime
of combustion wave propagation.
Keywords: non-adiabatic; flame speed; combustion waves; competitive
exothermic-endothemic
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1 Introduction

Combustion processes have played a significant part in the advancement of
technology and civilisation throughout human history. The multiple appli-
cations of combustion processes in today’s industries, such as the synthesis
of ceramics, combustion engines, and power generation, are the result of
numerous studies and experiments [12].

Flames or combustion waves that propagate through a reactive media are of
interest to industry, especially combustion waves that reflect travelling wave
solutions. They find relevance in, for example, the synthesis of ceramics and
advanced materials [17], power generation [19], and chemical reactors [2]. A
combustion wave is essentially a propagating reaction front delineating the
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change from the initial chemical reactants to the reaction products. Whilst
most observed combustion processes consist of multiple (perhaps tens or
hundreds) chemical reactions, occurring consecutively or simultaneously, it is
often useful to group reactions into simpler models describing the dominant
reaction kinetics. Ignoring hydrodynamic effects, as is often done [5, 6, 7, 8,
15, 18, 20, 21], these reduced kinetic schemes give rise to reaction-diffusion
systems that are more tractable to detailed mathematical analysis, and
provide important insights into the overall process. For example, where
thermal effects are prominent, the detailed kinetics can be reduced to a
simple, useful model consisting of one exothermic and one endothermic
reaction. Such systems are classified as: ‘sequential’, when both reactions
occur consecutively [10, 13]; ‘parallel’, when both reactions occur at the same
time whilst consuming different reactants [2]; and ‘competitive’, when both
reactions are simultaneously occurring and feeding on the same reactant.

While sequential and parallel schemes are relatively well studied, there are
few studies focused on kinetic schemes with competing endothermic and
exothermic reactions, despite such schemes being relevant to decomposition
and pyrolysis processes [1] and applications involving ammonium nitrate based
explosives [16]. A recent study by Hmaidi et al. [8] investigated the existence
of propagating combustion waves in a competitive, adiabatic, one dimensional
reactive solid slab (infinite Lewis number), assuming high activation energies
and an activation energy for the endothermic reaction twice that of the
exothermic reaction. Sharples et al. [15] investigated differing regimes of
wave propagation in a similar system assuming the same ratio of activation
energies, but extending the investigation to non-infinite Lewis numbers,
thus accommodating non-solid reactants within the analysis. Gubernov et
al. [6] investigated the properties of combustion waves and travelling wave
solutions in a similar adiabatic competitive system, applying asymptotic
analysis and establishing the existence of endothermic, exothermic and mixed
endothermic-exothermic parameter regimes. Wee et al. [21] considered a
similar competitive adiabatic system with a more balanced contribution from
the endothermic reaction for generic reactants, and established regimes of
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steady and pulsating propagating speeds. Certain behaviours, such as the
loss of stability of the reaction front in combustion reaction schemes occur
in certain parameter ranges, and result in possibly undesired outcomes in
industrial applications [11].

The aim here is to investigate the behaviour and stability of the reaction
fronts resulting from a competitive endothermic-exothermic scheme with
generic reactants or fuel and to study the effects of heat loss to the ambi-
ent surroundings, thus extending recent research [6, 8, 15, 21] on adiabatic
competitive endothermic-exothermic schemes to non-adiabatic settings. We
utilise Flexpde [4] to determine the properties of the propagating wave fronts,
and verify the results obtained using the method of lines [14] implemented
with Matlab.

2 Mathematical model

We consider a reaction scheme with two stage kinetics for combustion wave
propagation in a pre-mixed one dimensional reactive medium. In contrast to
previous studies [6, 8, 15, 21], we include the effects of volumetric heat loss
due to Newtonian cooling.

The model is implemented in a way similar to that used by Turcotte et
al. [18], where combustion is initiated via a hot wire ignition. As with
previous studies [6, 8, 15], we neglect hydrodynamic effects in the system.
The model allows Lewis number variations so permits non-solid reactants, and
we assume parameter values from previous studies [15, 21] to allow comparison
between adiabatic and non-adiabatic systems. It is assumed that the reactant
undergoes one of two possible competing reaction pathways: one endothermic
and one exothermic; and that the reaction products are chemically inert and
do not change the physical properties such as the heat capacities, density or
diffusivity. An example of such a configuration is a long insulated cylinder
containing a fuel undergoing decomposition, with an appropriate a priori
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averaging over the transverse spatial dimension of the reaction front. Such a
set up was used in laboratory experiments studying the burning of ammonium
nitrate (NH4NO3) in the context of emulsion explosives [3, 18]. For instance,
a decomposition reaction of ammonium nitrate modelled by two competing
endothermic and exothermic reactions is

NH4NO3 → NH3 + HNO3 (endothermic)
NH4NO3 → N2O+ 2H2O (exothermic).

With the aim of analysing the properties of a combustion wave front in a
competitive reaction-diffusion scheme in one spatial dimension, we propose
a generalised description of the reaction pathways within such a scheme,
assuming Arrhenius kinetics:

Reactant A
k1(T)−→ Product A − Heat (Q1), k1 = A1e

−E1/RT ,

Reactant A
k2(T)−→ Product B − Heat (Q2), k2 = A2e

−E2/RT . (1)

The exothermic reaction, indicated by the subscript 2, drives the combustion
wave front and is characterised by its activation energy E2 (Jmol−1), pre-
exponential rate constant A2 (s−1) and heat release Q2 (J kg−1). Heat from
the system is lost via the endothermic reaction, indicated by the subscript 1,
with activation energy E1 (Jmol−1), pre-exponential rate constant A1 (s−1)
and heat release Q1 (J kg−1). The temperature and reaction rates of the
endothermic and exothermic reactions are T (K), k1 (s−1) and k2 (s−1),
respectively.

On applying heat and mass balance to the reaction and diffusion of reactant
and heat, the governing equations for the competitive system are [20]

ρcp
∂T

∂t
=k

∂ 2T

∂ x2
+ ρ(−Q1A1e

−E1/RT +Q2A2e
−E2/RT)C−

hS

V
(T − Ta) ,

ρ
∂C

∂t
= ρD

∂ 2C

∂x2
− ρ(A1e

−E1/RT +A2e
−E2/RT)C , (2)
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where the reactant mass fraction and temperature are denoted by C and T ,
respectively, with Ta the ambient temperature. The time and space coordinates
are t and x, respectively. The density is ρ (kgm−3), k (J s−1m−1K−1) is the
thermal conductivity, D (m2s−1) is the coefficient of mass diffusion, R is the
universal gas constant (equal to 8.314 Jmol−1K−1), cp (J kg−1K−1) is the
specific heat capacity at constant pressure of the reactant, h (J s−1m−2K−1)
the Newton cooling coefficient and S/V the surface to volume ratio of the
reacting vessel.

For convenience, we introduce the dimensionless temperature, space and time
coordinates [15]

u =
RT

E2
, x ′ = x

√
ρQ2A2R

kE2
, t ′ = t

Q2A2R

cpE2
. (3)

The dimensionless system of equations (with the primes omitted) is thus

∂u

∂ t
=
∂ 2u

∂x2
+ Ce−1/u − qrCe−f/u − l(u− ua) ,

∂C

∂ t
=
1

Le
∂ 2C

∂x2
− βCe−1/u − βrCe−f/u , (4)

where ua is the dimensionless ambient temperature, and the new parameters
are

q =
Q1

Q2

, f =
E1

E2
, r =

A1

A2
, Le =

k

ρcpD
, β =

cpE2

RQ2

, l =
hSE2

ρVRQ2A2
.

(5)

Following the parameterisation of Sharples et al. [15], q is the ratio of the
reaction enthalpies, f is the ratio of activation energies, r is the ratio of pre-
exponential rate constants, Le is the Lewis number describing the ratio of the
thermal conductivity and molecular diffusivity, β is a parameter describing
the energy balance of the exothermic reaction within the system (known as the
exothermicity parameter), and l is the non-dimensional heat loss coefficient
incorporating a Newtonian heat loss term, h. The inclusion of l allows the
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model to simulate non-adiabatic conditions, as compared to the adiabatic
condition imposed elsewhere [6]. The Lewis number has two significant values:
Le → ∞ for solid fuels and Le = 1 for gaseous fuels. For increasing values
of β the system becomes less exothermic.

The boundary conditions for the system, corresponding to a reaction front
propagating in the positive x direction, are

u = ua , C = 1 , as x→ +∞ ;

∂u

∂ x
= 0 ,

∂C

∂x
= 0 , at x = 0 . (6)

On the right boundary (x → +∞) is the cold (u = ua) and unburnt state
(C = 1) and ua = 0 , as with previous studies [6, 7, 15]. On the left boundary
(x = 0) is the burnt product mixture. However, neither the concentration nor
the temperature of the product mixture can be specified explicitly. Since no
reaction occurs on the left boundary, we set the derivatives of u and C to
zero at x = 0 .

3 Numerical schemes

Flexpde [4] is a finite element software package for obtaining numerical
solutions to partial differential equations (pdes). As a space and time adaptive
finite element package, it minimises errors to a relative error tolerance level.
We control the accuracy of the solutions by setting the value of error tolerance—
known as the ‘errlim’ variable within the code. Flexpde estimates the relative
uncertainty among the solution variables of the pde integrals over the mesh
cell and compares it to the value of the ‘errlim’ variable. When this tolerance
level is reached or exceeded, the mesh size is refined and the solution is
re-iterated until the estimated errors in the variables are less than the set
tolerance level. All solutions to the pdes in this article were obtained using
this package with the error tolerance limit set to errlim = 1 × 10−5 ; that



3 Numerical schemes C653

Figure 1: Initial conditions for the temperature profile for the domain 0 6
x 6 1000 showing the Gaussian pulse simulating a ‘hot wire’ ignition. The
temperature profile remains flat for x > 1000 .

is, Flexpde refines the mesh cell until the estimated error in all variables
(relative to the variable range) is less than 0.001% in each cell.

The method of lines (mol) is a technique for obtaining numerical solutions to
pdes, and is well used in multiple studies [14]. In the mol the spatial partial
derivatives are discretised by finite difference approximations, transforming
the pdes into ordinary differential equations (odes), which are continuous in
the time variable. The resulting system of odes is then solved as an initial
value problem. In this analysis, the mol is coded in Matlab and utilises the
ode15s solver.

For the numerical integration of the governing pdes, the initial condition
for the reactant mass fraction was C = 1 , while the initial temperature
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was provided in the form of a Gaussian pulse simulating a hot wire ignition
at x = 0 , for all numerical simulations. This is shown in Figure 1. The
integration domain was set as 0 6 x 6 5× 104 in order to accommodate the
combustion wave profile, which may take some time to stabilize after some
initial transient behaviour. Following previous work [6, 15], the dimensionless
ambient temperature was set to zero [7] with the dimensionless volumetric
heat loss coefficient set to 1× 10−6 . The dynamics of the propagating wave
are traced over a time interval of the order 106 . As with previous studies on
competitive systems we always assume f = 1.5 , q = r = 1 , focusing on the
behaviour of the system as Le and β are varied.

4 Results

The governing equations (4) subject to the boundary conditions (6) were
solved numerically using Flexpde [4] and independently verified using mol.

The typical fuel and temperature profile of the propagating reaction front over
the domain of integration obtained from Flexpde [4] is plotted in Figure 2.
The reaction front occurs at approximately x = 2.5 × 104 and propagates
from left to right. Ahead (to the right) of the front where the unreacted
initial reactants are, the reactant mass fraction remains at C = 1 and the
temperature u = ua . Behind the reaction front where the reactants have been
burnt, the reactant mass fraction decreases to C = 0 and the temperature
profile shows a temperature decay to the ambient temperature following the
sharp increase at the reaction front.

Figure 3 shows discrete versions of the Hopf and extinction loci obtained from
observations of the wave speed as determined by Flexpde [4] for 1 6 Le 6 10 .
The green and blue curves demarcate the Hopf and extinction loci, respectively,
while the red and black curves mark the locus for period doubling bifurcations.
The Hopf locus is the set of points beyond which pulsations in the wave front
occur, while the extinction locus is the set of points beyond which Flexpde
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Figure 2: Profiles of the (a) temperature and (b) reactant mass fraction of the
propagating combustion front for Le = 2 , β = 7 obtained using Flexpde [4].
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Figure 3: Bifurcation diagram showing the Hopf (green), extinction (blue)
and period doubling bifurcation (red and black) loci for 1 6 Le 6 10 . Steady
propagating waves were found within region A, period-one oscillations within
region B, period-two oscillations within region C and non-propagation beyond
the extinction loci. The curves were obtained via Flexpde [4] and the circular
markers via the method of lines.

was not able to discern a non-trivial solution [15]. In our numerical analysis,
we obtained a stable regime of propagating wave fronts with unique speeds in
region A, a steady pulsating regime of period-one and period-two oscillations
in region B and C, respectively, and extinction beyond the extinction loci.
Period-four and chaotic oscillations were also detected in the region between
region C (black curve) and the extinction region.

For small Lewis numbers, the behaviour of the wave front transitions directly
from a steady speed regime to extinction as the value of β is increased,
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observed in Figure 3 for Lewis numbers of approximately Le 6 3 . The Hopf
locus intersects the extinction locus at Le ≈ 3 . However, as the magnitude of
the Lewis number increases, a shift in the behaviour of the propagating wave
fronts occurs and the fronts exhibit period-one, period-two and period-four
pulsations. For instance, considering Le = 8 , for a sufficiently small value
of β (e.g. β = 7), we obtain a propagating reaction front with a steady speed
of v ≈ 0.021 , as seen in Figure 4a, corresponding to region A in Figure 3. As
we increase the value of β to beyond the Hopf bifurcation point of β ≈ 7.08 ,
the reaction front loses stability and manifests as pulsations with cyclical
oscillations of the wave speed. Figure 4b illustrates the oscillatory behaviour
of the propagating wave for Le = 8 and β = 7.6 , corresponding to region B
in Figure 3. This period-one type oscillation is characterised by a constant
amplitude and period in the wave speed profile.

Further increasing β, we observe another bifurcation in the form of a period
doubling from period-one to period-two pulsations, represented in Figure 4c,
where the wave speed profile oscillates with a constant period between four
wave speeds. Similar qualitative results were obtained in previous studies
of adiabatic competitive endothermic-exothermic reactive schemes [15, 21]
where both period-one and period-two pulsations were observed.

A further period doubling to period-four oscillations is observed as β is
increased, as shown in Figure 4d for Le = 8 and β = 7.93 . In contrast, in
previous work on the adiabatic competitive reaction scheme, only period-one
and period-two oscillations were observed. Whilst no further period doubling
bifurcations are detected in the non-adiabatic system studied here, complex
oscillations, most likely chaotic, were found in the wave speed profile prior to
the extinction of the reaction front. This is shown in Figure 4e. We speculate
that a period doubling route to chaos, similar to that observed by Gubernov
et al. [5], is occurring in a narrow region of parameter space, which will be
the subject of future investigation.
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Figure 4: Wave speed profiles de-
rived for Le = 8 and (a) β = 7 ,
(b) β = 7.6 , (c) β = 7.9 , (d) β =
7.93 and (e) β = 7.95 .
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5 Discussion

We investigated the propagation of combustion waves in a competitive
endothermic-exothermic reaction scheme under non-adiabatic conditions in
one spatial dimension. The model was analysed numerically for f = 1.5
and r = q = 1 using the adaptive finite element package Flexpde [4] for
the numerical integration of the governing partial differential equations, and
the results corroborated by an independent numerical scheme utilising the
method of lines. Both methods yielded results which were qualitatively iden-
tical but with small quantitative differences in the wave speed profiles as
well as in the Hopf bifurcation, period doubling bifurcations and extinction
loci. Despite the simple chemistry assumed, complex behaviour was observed
for specific parameter ranges. The results obtained show clear regions of
steady speeds and differing modes of pulsating propagation. In particular, the
existence of period-one, two and four pulsation regimes were established. For
certain parameter regions, complex oscillations which were likely to be chaotic
were also detected prior to the numerical extinction of the propagating wave
front. Whilst period-one and two oscillations were previously detected in a
similar competitive scheme under adiabatic conditions [15, 21], period-four
and chaotic oscillations are yet to be detected in such competitive reaction
schemes. The appearance of higher-order oscillations with the introduction of
heat loss suggests that the presence of heat loss could be the cause of what
appears to be a period doubling route to chaos and subsequent extinction
that was noted in previous research [5].

The present study on a competitive endothermic-exothermic reaction scheme
only considered chemical effects under the assumption of Arrhenius kinetics,
together with Newtonian heat loss; other effects such as hydrodynamic inter-
actions were ignored. However, the results obtained raise questions about the
influence of oscillating reaction fronts arising in multi-stage reaction schemes
on the dynamics associated with flame acceleration and transitions from
deflagration to detonation [9]. Such questions are particularly pertinent given
the relevance of the competitive endothermic-exothermic reaction scheme to
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ammonium nitrate based combustion. These questions will be considered in
our ongoing research.
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