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Abstract

We present parameterisations of the subgrid eddy-eddy and eddy-
meanfield interactions in a baroclinic ocean representative of the Antarc-
tic Circumpolar Current. Benchmark direct numerical simulations were
undertaken using a quasi-geostrophic spectral spherical harmonic code
of maximum zonal and total truncation wavenumber of T = 252 . The
eddy-eddy interactions are represented by both stochastic and deter-
ministic parameterisations, with model coefficients determined from
the direct numerical simulations truncated back to the large eddy
simulation truncation wavenumber TR less than T . Coefficients of the
deterministic eddy-meanfield model are determined by a new least
squares regression method. Truncations were repeated for various TR,
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with the dependence of the coefficients on TR identified. Kinetic energy
spectra from the large eddy simulations using these coefficients agree
with the direct numerical simulations.
Subject class: 76F65, 76F30
Keywords: large eddy simulation, subgrid parameterisation, turbulence,
ocean
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1 Introduction

As it is not possible to explicitly resolve all of the scales of motion in the
ocean, one resorts to large eddy simulations (les), where the large eddies
are resolved by a computational grid and the unresolved subgrid interactions
are parameterised. There are four main types of subgrid interactions: eddy-
eddy; eddy-meanfield; eddy-topographic; and meanfield-meanfield [3]. If
these interactions are not self-consistently parameterised, then an increase in
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resolution will not necessarily increase the accuracy of the explicitly resolved
scales. This dependence of the resolved scales on resolution has been an issue
in general circulation models (gcms) since the earliest simulations of weather
and climate, and persists today in even the most sophisticated gcms [8].

The subgrid eddy-eddy interactions represent the interactions between the
transient resolved and subgrid eddies. These interactions are typically mod-
elled by a dissipation operator acting on the resolved field. There is at present
no fundamental theory governing the properties of the dissipation, with simu-
lations generally tuned to yield desirable properties and to achieve numerical
stability [6]. In early oceanic simulations these empirical dissipation operators
were applied in horizontal and vertical directions [1]. Redi proposed [9] that
the dissipation operator should be diagonal when oriented in isopycnal (con-
stant density) directions, effectively setting all diapycnal subgrid interactions
to zero. Whatever the coordinate system, the dissipation operator is typically
isotropic and has a form which is either of Laplacian or bi-harmonic order [6].
However, recently Kitsios et al. [7] developed a set of scaling laws governing
how the dissipation changes with resolution. The dissipation strength and
order are functions of resolution, and at typical resolutions the dissipation is
of higher order than bi-harmonic.

The eddy-meanfield interactions represent the interactions between the subgrid
eddies and the resolved meanfield. The eddy-meanfield parameterisations of
Gent and McWilliams [5] is one of the most commonly adopted in simulations
of the ocean. This parameterisation prescribes the structure of the skew
symmetric elements of the dissipation operator in isopycnal coordinates
acting on the temperature in the energy equation. The addition of the skew
symmetric terms produces simulations with smaller, more realistic diapycnal
fluctuations [6]. There is currently no analogous approach accounting for the
eddy-meanfield interactions in the momentum equations.

The parameterisation of the quasi-geostrophic eddy-meanfield interactions is
the main focus of the current study. Specifically, we develop parameterisations
for a flow representative of the Antarctic Circumpolar Current (acc), gener-
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ated using a quasi-geostrophic spectral spherical harmonic code of maximum
zonal and total truncation wavenumber of T = 252 . The eddy viscosity
coefficients are calculated from the statistics of high resolution reference direct
numerical simulations (dnss) truncated back to the les truncation wavenum-
ber TR < T . The coefficients representing the eddy-eddy interactions are
determined using the method of Frederiksen and Kepert [4]. This approach
was previously successfully applied to quasi-geostrophic (qg) simulations
of the ocean, comprising of sheared currents, Rossby waves, and baroclinic
instability [7, 10, 11]. The eddy-meanfield interactions are determined from
the dns statistics via a new approach published here for the first time.

Section 2 summarises the qg potential vorticity equation (qgpve), and
presents the resulting dns flow fields and spectra. dns in this content refers
to a high resolution reference simulation, and not one that resolves down
to the Kolmogorov scale. Section 3 shows how the subgrid eddy-eddy and
eddy-meanfield coefficients are determined from the dns, along with the
subgrid coefficients themselves. Section 4 outlines the les version of the
qgpve, and the spectra from the les are compared to that of the reference
dns. Concluding remarks are presented in Section 5.

2 Direct numerical simulation

We employ the two level qg model of Frederiksen [2], which captures the
essential dynamics of baroclinic and barotropic instabilities. The vorticity is
represented at two vertical levels, with j = 1 representing a depth of approxi-
mately 200m, and j = 2 a depth of 600m. The system is nondimensionalised
by using the radius of the Earth (a = 6371 km) as a length scale, and the
inverse of the Earth’s angular velocity (Ω = 7.292× 10−5 s−1) as a time scale.
By default all variables are assumed to be nondimensional unless units are
specified.

The qgpve is spectrally discretised by expanding the field variables in
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spherical harmonics with the zonal (longitudinal) wavenumber m and the
total wavenumber n. This results in the prognostic equations for the spectral
coefficients of the potential vorticity, qjmn = ζjmn+(−1)jFL[ψ

1
mn−ψ

2
mn] , where

ζjmn = −n(n + 1)ψjmn are the spectral coefficients of the vorticity, ψjmn are
the streamfunction coefficients, n(n+ 1) is the discrete form of the Laplacian,
and the superscript j on the flow variables denotes the level. Here FL is a
layer coupling parameter, related to the Rossby radius of deformation by
rR = 1/

√
2FL . The evolution equation for qjmn is

∂qjmn
∂t

= i
∑
p,q

∑
r,s

Kmprnqsψ
j
−pqq

j
−rs − iωmnζ

j
mn − α

j(n)ζjmn

+ κn(q̃
j
mn − q

j
mn) − n(n+ 1)

2∑
l=1

νjl0 (m,n)qlmn . (1)

The summations in the first term are over the triangular wavenumber set
T = C(T) , with T the dns truncation wavenumber and

C(T) = [p,q, r, s] for − T 6 p, r 6 T , |p| 6 q 6 T , |r| 6 s 6 T . (2)

The Rossby wave frequency is ωmn = −Bm/[n(n + 1)] , where B = 2 with
the chosen nondimensionalisation. The drag at each level is the function
αj(n) = αjmax{1 − erf[0.1(n − 50)]}/2 , where erf is the error function and
the damping times 1/αjmax are 40 days for level one (j = 1) and 10 days
for level two (j = 2). The interaction coefficients Kmprnqs were discussed in
detail by Frederiksen and Kepert [4]. All simulations are driven toward
a mean state q̃jmn that is purely zonal (q̃jmn are zero unless m = 0) and
corresponds to a large scale easterly current in the mid-latitudes of the
southern hemisphere, broadly representative of the acc. The simulations
are driven toward this state by a relaxation parameter κn, which for m = 0
and n 6 15 is κn = 10−6 s−1, and κn = 0 for all remaining wavenumber pairs.
The bare eddy viscosity νjl0 (m,n) is necessary as the dns does not resolve
all of the scales of motion. We represent νjl0 (m,n) in its general anisotropic
matrix form (dependent on m and n) but in our simulations it is isotropic
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ê2

ē1
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Figure 1: dns flow field: (a) level 1 instantaneous eddy (non-zonal) stream-
function field (ψ1), from contours level −1.4km2s-1 (black) to 1.4km2s-1

(white); (b) time averaged zonal current (uj) at level j; and (c) mean (ēj)
and fluctuating (êj) kinetic energy spectra at level j.

the southern hemisphere, consistent with the acc. The corresponding time
averaged zonal current (uj) is shown as function of latitude in Figure 1(b).
The maximum velocity of the time averaged current at depths of 200 m and
600 m, are ≈ 0.6 ms-1 and ≈ 0.3 ms-1 respectively. Further details on the
basic state are presented in Kitsios et. al. [7]. The kinetic energy spectrum
(ej) is decomposed into mean (ēj) and transient (êj) energies. Figure 1(c)
illustrates that the level 1 energy is greater than level 2 for all n. The en-
ergy containing scale wavenumber, kE ≈ 70, is defined as the wavenumber
at which the self similar inertial range begins. It is labelled on the n axis of
Figure 1(c) along with the Rossby wavenumber kR.

3 Subgrid parameterisations

The resolution of a les is lower than the associated dns, and confined to the
resolved scale wavenumber set R = C(TR), where TR is the les truncation
wavenumber such that TR < T . The subgrid wavenumber set is defined
as S = T − R. To facilitate a discussion on the flow decomposition, we

Figure 1: dns flow field: (a) level one instantaneous eddy (non-
zonal) streamfunction field (ψ1) from contours level −1.4 km2s−1 (black)
to 1.4 km2s−1 (white); (b) time averaged zonal current (ūj) at level j; and
(c) mean (ēj) and fluctuating (êj) kinetic energy spectra at level j.

(dependent only on n) where νjl0 (m,n) = νjl0 (n) = δljν
jj
0 (T)[n/T ]

ρ
j
0−2 , and

δlj is the Kronecker delta function, ensuring the off diagonal elements are
zero. Here νjj0 (T) is the value of the diagonal elements at truncation and the
exponent ρj0 determines the steepness of νjj0 (n) . There is no topography or
orography in the present simulations.
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A dns of a qg ocean is undertaken with FL = 2.5× 10−10m−2, corresponding
to a Rossby radius of rR = 1/

√
2FL = 45 km. The nondimensional Rossby

wavenumber is kR = a/rR = 142 , which is consistent with the simulations of
Zidikheri and Frederiksen [10]. Here we use a dns truncation wavenumber
of T = 252 , which is equivalent to 768 longitudinal and 384 latitudinal grid
points, or a grid point approximately every 0.5 degrees. The time step size used
is ∆t = 1200 s, and the statistics are accumulated over a period of 100 years.
A snapshot of the level one instantaneous streamfunction field ψ1 minus the
zonal component is shown in Figure 1(a), which illustrates that the dominant
structures are located in the mid to high latitudes of the southern hemisphere,
consistent with the acc. The corresponding time averaged zonal current ūj
is shown as function of latitude in Figure 1(b). The maximum velocities of
the time averaged current at depths of 200m and 600m are approximately
0.6ms−1 and 0.3ms−1, respectively. Further details on the basic state were
presented by Kitsios et al. [7]. The kinetic energy spectrum ej is decomposed
into mean (ēj) and transient (êj) energies. Figure 1(c) illustrates that the
level one energy is greater than the level two energy for all n. The scale
wavenumber kE ≈ 70 is defined as the wavenumber at which the self similar
inertial range begins. It is labelled on the n axis of Figure 1(c) along with
the Rossby wavenumber kR.

3 Subgrid parameterisations

The resolution of a les is lower than the associated dns and confined to the
resolved scale wavenumber set R = C(TR) , where TR is the les truncation
wavenumber such that TR < T . The subgrid wavenumber set is defined
as S = T − R . To facilitate a discussion on the flow decomposition we
let q = (q1mn,q2mn)T for a given wavenumber pair. In this vector notation
qt(t) = qR

t (t) + qS
t (t) , where qt is the tendency (time derivative) of q. The

tendency of the resolved scales is qR
t , where all triadic interactions involve

wavenumbers less than TR. The remaining subgrid tendency qS
t has at least
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one wavenumber greater than TR which is involved in the triadic interactions.
On decomposing qS

t ,
qS
t (t) = q̂S

t (t) + f̄ , (3)

where q̂S
t is the fluctuating component representing the eddy-eddy interactions

and f̄ ≡ 〈qS
t 〉 is the ensemble averaged subgrid tendency representing the

eddy-meanfield interactions. The parameterisation of both of these interaction
types are determined from the statistics of the reference dns.

3.1 Subgrid eddy-eddy parameterisation

The q̂S
t is represented by the stochastic equation

q̂S
t (t) = −Ddq̂(t) + f̂(t) , (4)

where Dd is the subgrid drain dissipation matrix, q̂ is the fluctuating com-
ponent of q, and f̂ is a random forcing vector. As our simulations have
two vertical levels, Dd is a time independent 2× 2 matrix, and f̂ is a time
dependent two element column vector. The Dd matrix is determined by
post-multiplying both sides of (4) by q̂†(t0) , integrating over the turbulent
decorrelation period τ, ensemble averaging to remove the contribution of f̂ ,
and rearranging to produce

Dd = −

〈∫ t0+τ
t0

q̂S
t (σ)q̂

†(t0)dσ

〉 〈∫ t0+τ
t0

q̂(σ)q̂†(t0)dσ

〉−1

, (5)

where † denotes the Hermitian conjugate of vectors and matrices. The angled
brackets denote ensemble averaging, with each ensemble member determined
by shifting t0 forward by one time step. The turbulence decorrelation time τ
is chosen to be sufficiently large to capture the memory effects.

The model for f̂ is determined by calculating the Hermitian matrix Fb =
Fb+ F

†
b , where Fb = 〈f̂(t)q̂†(t)〉 . Post-multiplying both sides of (4) by q̂†(t0)
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and adding the conjugate transpose of (4) pre-multiplied by q̂(t0) yields the
Lyapunov equation
〈
q̂S
t (t)q̂

†(t)
〉
+
〈
q̂(t)q̂S†

t (t)
〉
= −Dd

〈
q̂(t)q̂†(t)

〉
−
〈
q̂(t)q̂†(t)

〉
D†
d+Fb . (6)

Given that Dd is known, Fb can now be calculated. At this point the formu-
lation is general, and f̂ is coloured noise. However, for the implementation of
the stochastic subgrid parameterisation it is sufficient to assume that f̂ is the
white noise process for which

〈
f̂(t)f̂†(t′)

〉
= Fbδ(t− t

′) .

The subgrid model in (4) represents the subgrid scales in a stochastic manner.
One can also do so deterministically, where the subgrid tendency is modelled
according to q̂S

t (t) = −Dnetq̂(t) with the net dissipation Dnet = Dd + Db

and the backscatter dissipation Db = −Fb
〈
q̂(t)q̂†(t)

〉−1. Here the subgrid
coefficients are presented in eddy viscosity form, where the drain, backscatter
and net eddy viscosities are related to their respective dissipations by νd ≡
Dd/[n(n+ 1)] , νb ≡ Db/[n(n+ 1)] and νnet ≡ Dnet/[n(n+ 1)] .

We now present the subgrid model coefficients from the dns statistics presented
in Section 2. The dns is truncated to various values of TR to determine
how the eddy viscosities change with resolution. Firstly we present the
anisotropic drain eddy viscosity νd truncated to TR = 126 , with τ = 288∆t =
4 days. The real component of the upper diagonal ν11d (m,n) is illustrated in
Figure 2(a). At this resolution ν11d (m,n) increases with n, and for m < 60

has only a weak dependence on m and hence is approximately isotropic in
this region. The lower diagonal element ν22d (m,n) has a similar form, and
the off diagonal elements are small in comparison. These observations are
also true for the backscatter and net eddy viscosities. We also find that
νd ≈ 2νnet ≈ −2νb . However, at lower truncation levels the coefficients
become more anisotropic and the off diagonal elements become proportionally
more important. The self similarity of the eddy viscosities is most clearly
illustrated by the isotropised (averaged over m) profiles. The real component
of the upper diagonal isotropised drain eddy viscosity ν11d (n) is illustrated
in Figure 2(b) for various truncation levels. As the resolution increases
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Figure 2: Subgrid eddy-eddy parameterisation coefficients for truncations of
a T = 252 dns. (a) Anisotropic coefficients for an les with TR = 126; and
(b) isotropic coefficients for TR = 90, 100, 110, 126.

aged field 〈q〉. For each wavenumber pair we assume the functional form

f̄ = −D〈q〉 + b , (7)

where D is a 2 × 2 dissipation operator, and b is a 2 element vector of
constant coefficients. We assume that (7) also holds for small perturbations
of the climate centred at the ensemble averaged climate, such that

f̄i = −Dqi + b + εi , (8)

where qi and f̄i are the time averaged meanfield and subgrid tendency calcu-
lated over the i-th non-overlapping time window of length τM , and εi is the
associated 2 element error vector. The ensemble averages of each of the terms
are 〈qi〉 ≡ 〈q〉, 〈f̄i〉 ≡ f̄ , and 〈εi〉 = 0. The dissipation is solved for in a least
squares sense, by subtracting (7) from (8), post-multiplying by (qi − 〈q〉)†,
ensemble averaging both sides, and rearranging for D to produce

D = −
(
〈f̄iq†

i 〉 − f̄〈q〉†
) (

〈qiq
†
i 〉 − 〈q〉〈q〉†

)−1

, (9)

where we assume that the error term εi is uncorrelated with (qi−〈q〉)†. Once
D is known we can determine the offset by rearranging (7) for b.

The above process is now applied to the dns with T = 252. The only
mechanism for symmetry breaking in (1) is the forcing term κn(q̃mn − qmn).
As κn is only non-zero for m = 0 and n ≤ 15, it is only the values of f̄ j

mn

and q̄j
mn at these wavenumber components that are non-zero under sufficient

sampling. The average subgrid tendency, f̄ , is plotted in Figure 3(a) for a
truncation level TR = 126. For all truncation levels f̄ 1

0n is approximately

Figure 2: Subgrid eddy-eddy parameterisation coefficients for truncations of
a T = 252 dns. (a) Anisotropic coefficients for an les with TR = 126 ; and
(b) isotropic coefficients for TR = 90 (dot),100 (small dash), 110 (large dash)
and 126 (solid).

the maximum value of Re[ν11d (n)] decreases, and the most negative value
approaches zero. For truncations with TR > kE the positive values of the eddy
viscosities are concentrated in the last kE wavenumbers before truncation.
This means that when plotted against n/TR the profiles become steeper as
the resolution increases. Scaling laws governing how νd , νb and νnet change
with resolution, and the off diagonal elements were presented in more detail
by Kitsios et al. [7].

3.2 Subgrid eddy-meanfield parameterisation

The parameterisation of the eddy-meanfield term represents the relationship
between the ensemble averaged subgrid tendency f̄ and the ensemble averaged
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field 〈q〉 . For each wavenumber pair we assume the functional form

f̄ = −D̄〈q〉+ b , (7)

where D̄ is a 2× 2 dissipation operator and offset b is a constant two element
vector. We assume that (7) also holds for small perturbations of the climate
centred about the ensemble averaged climate, such that

f̄i = −D̄q̄i + b + εi , (8)

where q̄i and f̄i are the time averaged meanfield and subgrid tendency calcu-
lated over the ith non-overlapping time window of length τM, and εi is the
associated two element error vector. The ensemble averages of each of the
terms are 〈q̄i〉 ≡ 〈q〉 , 〈f̄i〉 ≡ f̄ and 〈εi〉 = 0 . The dissipation is solved in a
least squares sense by subtracting (7) from (8), post-multiplying by (q̄i−〈q〉)† ,
ensemble averaging both sides, and rearranging for D̄ to produce

D̄ = −
(
〈f̄iq̄†

i 〉− f̄〈q〉†
)(
〈q̄iq̄†

i 〉− 〈q〉〈q〉†
)−1

, (9)

where we assume that the error term εi is uncorrelated with (q̄i − 〈q〉)† .
Once D̄ is known we can determine the offset by rearranging (7) for b.

The above process is applied to the dns with T = 252 . The only mechanism
for symmetry breaking in (1) is the forcing term κn(q̃mn − qmn) . As κn is
only nonzero for m = 0 and n 6 15 , it is only the f̄jmn and q̄jmn at these
wavenumber components that are nonzero under sufficient sampling. The
average subgrid tendency f̄ is plotted in Figure 3(a) for a truncation level
TR = 126 . For all truncation levels f̄10n is approximately a mirror image of f̄20n ,
which modifies the mean shear in the flow. It therefore makes more sense to
present f̄ in baroclinic space. We define f̄B ≡ (f̄BTmn, f̄BCmn)T , where f̄BTmn is the
barotropic component and f̄BCmn is the baroclinic component, which we find to
be dominant for the present data. The conversion between the coordinate
systems is f̄B = Bf̄ , where

B =
1

2

[
1 1
1
cn

− 1
cn

]
, (10)
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Figure 3: Subgrid eddy-meanfield parameterisation coefficients for trunca-
tions of a T = 252 dns. (a) Mean potential vorticity tendency (f̄ j
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the amplitude (ν̄22
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B .

a mirror image of f̄ 2
0n, and has the effect of modifying the mean shear in

the flow. It therefore makes more sense to present f̄ in baroclinic space
f̄B ≡ (f̄BT

mn , f̄BC
mn )T , where f̄BT

mn is the barotropic component, and f̄BC
mn is the

baroclinic component which we find to be dominant for the present data.
The conversion between the coordinate systems is given by f̄B = Bf̄ , where

B =
1

2

[
1 1
1
cn

− 1
cn

]
, (10)

and cn = 1 + 2FL/[n(n + 1)]. Subgrid truncations are repeated for lower
values of TR, with the dominant f̄BC

0n component illustrated in Figure 3(b).
As the system is truncated more heavily (TR decreasing), there are more sub-
grid eddy-meanfield interactions and consequently f̄BC

0n increases. For various
truncation levels we then calculate D̄ using (9), and scale it into eddy viscos-
ity units by ν̄ = D̄/[n(n + 1)]. The eddy viscosity is then transformed into
barotropic/baroclinic space via ν̄B = Bν̄B−1. We find the ν̄22

B component to
be dominant, which represents the mean baroclinic tendency as a function of

Figure 3: Subgrid eddy-meanfield parameterisation coefficients for trun-
cations of a T = 252 dns. (a) Mean potential vorticity tendency f̄j0n for
an les with TR = 126 . For TR = 90, 100, 110, 120 : (b) mean baroclinic
tendency f̄BC0n ; and (c) eddy viscosity component ν̄22B . (d) For various TR, the
amplitude, ν̄22B (0, 15) , and slope, ρ̄2B , of ν̄22B .
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and cn = 1 + 2FL/[n(n + 1)] . Subgrid truncations are repeated for lower
values of TR, with the dominant f̄BC0n component illustrated in Figure 3(b). As
the system is truncated more heavily (TR decreasing), there are more subgrid
eddy-meanfield interactions and consequently f̄BC0n increases. For various
truncation levels we calculate D̄ using (9), and scale it into eddy viscosity
units using ν̄ = D̄/[n(n+ 1)] . The eddy viscosity is then transformed into
barotropic/baroclinic space via ν̄B = Bν̄B−1 . We find the ν̄22B component to
be dominant, which represents the mean baroclinic tendency as a function of
the mean baroclinic field. This component is plotted for various resolutions
in Figure 3(c), illustrating that as the truncation level decreases the required
eddy viscosity increases, consistent with the observations of f̄BC0n .

The change in magnitude, ν̄22B (0, 15) , and slope, ρ̄2B , of the baroclinic eddy
viscosity term is quantified by least squares fitting the ν̄22B (0,n) profiles to

ν̄22B (0,n) = ν̄
22
B (0, 15)(n/15)

ρ̄2B−2 , (11)

for n 6 15 . In Figure 3(d), ν̄22B (0, 15) is plotted as hollow diamonds on
the left vertical axis against TR, and ρ̄2B is plotted as filled diamonds on the
right vertical axis. The steepness, ρ̄2B , is relatively constant, ρ̄2B ≈ 2 , for
all TR. The data also illustrates that as TR increases (more scales resolved),
the strength ν̄22B (0, 15) decreases. The strength of the eddy-meanfield eddy
viscosity also decreases with resolution and this decrease is faster than the
eddy viscosity representing the eddy-eddy interactions. This means that as the
resolution decreases, the eddy-meanfield interactions become proportionally
more important. The eddy-meanfield eddy viscosities are also found to be
insensitive to the choice of window period τM, as long as τM is greater than
one week. Future work will address the sensitivity of these results to the
Rossby wavenumber kR, the target climate state q̃mn, and the relation rate κn.
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4 Large eddy simulation

The les equations are the same as for the dns in (1), with
(
qSt
)j
mn

added to
the right hand side, and solved over the wavenumber set R instead of T. The
fundamental form of

(
qSt
)j
mn

is the stochastic anisotropic representation

(
qSt
)j
mn

= −

2∑
l=1

Djl
d(m,n)q̂lmn + f̂

j
mn + f̄

j
mn . (12)

In the deterministic form, Djl
d(m,n) is replaced with Djl

net(m,n) and f̂jmn is
removed. The kinetic energy spectra of the dns is compared to the spectra
from the les variants at TR = 126 . The spectra at level one (e1) of both
les variants are compared to e1 of the dns in Figure 4(a), with each spectra
offset for clarity. Whilst the stochastic approach is the fundamental form,
we find that the deterministic les performs equally well, with both variants
achieving excellent agreement with the dns. In Figure 4(b) the spectra at
level two (e2) of the les is compared to e2 of the dns, with both variants
again achieving excellent agreement.

5 Concluding remarks

Subgrid parameterisations were developed for the eddy-eddy and eddy-
meanfield interactions for an oceanic flow representative of the acc. De-
terministic and stochastic subgrid parameterisations were presented for the
eddy-eddy interactions using the approach of Frederiksen and Kepert [4].
The stochastic variant consists of a drain eddy viscosity and a backscatter
noise term. The deterministic version is governed solely by the net eddy
viscosity, which represents the net effect of the drain and backscatter. The
eddy viscosity matrices required for the eddy-meanfield parameterisation were
calculated using a new approach presented here for the first time. In both
approaches the wavenumber dependent eddy viscosity matrices were derived
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Figure 4: dns kinetic energy spectra (dashed line) compared to les (solid
line) with anisotropic deterministic (deter) and stochastic (stoch) parame-
terisations at level: (a) 1; and (b) 2.

5 Concluding remarks

Subgrid parameterisations have been developed for the eddy-eddy and eddy-
meanfield interactions for an oceanic flow representative of the acc. Deter-
ministic and stochastic subgrid parameterisations have been presented for the
eddy-eddy interactions using the approach of Frederiksen and Kepert [4]. The
stochastic variant consists of a drain eddy viscosity and a backscatter noise
term. The deterministic version is governed solely by the net eddy viscosity,
which represents the net effect of the drain and backscatter. The eddy vis-
cosity matrices required for the eddy-meanfield parameterisation have been
calculated using a new approach presented here for the first time. In both
approaches the wavenumber dependent eddy viscosity matrices have been
derived self-consistently from the statistics of higher resolution dns. The ki-
netic energy spectra resulting from both les variants agree with the spectra
from the reference dns, and is achieved with no parameters nor a tuning
procedure. In the future we hope to apply the present subgrid modelling
approach to more complex mutli-level primitive equation simulation codes
incorporating more complete dynamics and physics.
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self-consistently from the statistics of higher resolution dns. The kinetic
energy spectra resulting from both les variants agree with the spectra from
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