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Abstract

The quasi-static Maxwell–Landau–Lifshitz–Gilbert equations which
describe the electromagnetic behaviour of a ferromagnetic material
are highly nonlinear. Sophisticated numerical schemes are required to
solve the equations, given their nonlinearity and the constraint that
the solution stays on a sphere. We propose an implicit finite element
solution to the problem. The resulting system of algebraic equations
is linear which facilitates the solution process compared to nonlinear
methods. We present numerical results to show the efficacy of the
proposed method.
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1 Introduction

The Maxwell–Landau–Lifshitz–Gilbert (mllg) equations describe the electro-
magnetic behaviour of a ferromagnetic material. For simplicity, we assume
that there is a bounded cavity D̃ ⊂ R3 (with perfectly conducting outer
surface ∂D̃) into which a ferromagnet D ⊂ R3 is embeded. We further assume
that D̃\D̄ is a vacuum. Over time period (0, T) we let DT := (0, T) × D
and D̃T := (0, T) × D̃ , and let S2 be the unit sphere. We denote the unit
vector of the magnetisation by m(t, x) : DT → S2 , and the magnetic field by
H(t, x) : D̃T → R3 over time t and space x. The quasi-static mllg system is

mt = λ1m×Heff − λ2m× (m×Heff) in DT , (1a)

−µ0m̃t = µ0Ht + σ∇× (∇×H) in D̃T , (1b)

in which the subscript t indicates a partial derivative with respect to time,
λ1 6= 0 , λ2 > 0 , σ > 0 and µ0 > 0 are constants and Heff is the effective
magnetic field which is dependent on both H and m. Here m̃ : D̃T → R3 is
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the zero extension of m onto D̃T , that is

m̃(t, x) =

{
m(t, x) (t, x) ∈ DT ,
0 (t, x) ∈ D̃T\DT .

The system (1a)–(1b) is supplemented with initial conditions

m(0, .) =m0 in D and H(0, .) = H0 in D̃ , (2)

and boundary conditions

∂m

∂n
= 0 on ∂DT and (∇×H)× n = 0 on ∂D̃T , (3)

where n is the outward normal vector to the relevant surface.

Equation (1a) is the first dynamical model for the precessional motion of
the magnetisation, suggested by Landau and Lifshitz [8] in 1935. In this
model, the time derivative of the magnetisation m is a combination of the
precessional movementm×Heff and the dissipative movementm×(m×Heff) ;
see Figure 1.

Cimrák [4] showed existence and uniqueness of a local strong solution of (1a)–
(3). He also proposed a finite element method to approximate this local
solution and provided an error estimation [3]. Baňas, Bartels and Prohl [2]
proposed an implicit nonlinear scheme using the finite element method, and
proved that the approximate solution converges to a weak global solution.
Their method required the condition k = O(h2) on the time step k and space
step h for the convergence of the nonlinear system of equations resulting from
the discretisation. We propose an implicit linear finite element scheme to find
a weak global solution to (1a)–(3). This approach was initially developed by
Alouges and Jaison [1] for the single Landau–Lifshitz equation (1a). We extend
their approach to the system (1a)–(1b). The advantage of this approach is
that there is no condition imposed on the time step and the space step.

For simplicity we choose the effective field Heff = ∆m + H . We focus
on implementation issues of the method. In particular, we show how the
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Figure 1: The combination of the precessional movement m×Heff and the
dissipative movement m× (m×Heff) .

finite element spaces and their bases are constructed. In another article we
conducted a convergence analysis [9].

In Section 2 we rewrite (1a) in a form which is more suitable for our approach;
see (4). We then introduce a variational formulation of the mllg system.
Section 3 is devoted to the presentation of the implicit linear finite element
scheme. Numerical experiments are presented in the last section.
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2 A variational formulation of the MLLG
equations

Before presenting a variational formulation for the mllg equations, we show
how to rewrite (1a) in the form introduced by Gilbert [6]

λ1mt + λ2m×mt = µm×Heff , (4)

in which µ = λ21 + λ
2
2 .

Lemma 1. Equation (1a) and equation (4) are equivalent.

Proof: By using the elementary identity

a× (b× c) = (a · c)b− (a · b)c , for all a,b, c ∈ R3 ,

and the property |m| = 1 we obtain

m× [m× (m×Heff)] = −m×Heff . (5)

Assume that m is a solution to (1a). Multiplying both side of (1a) by λ2m
using the vector product and using (5) we obtain

λ2m×mt = λ1λ2m× (m×Heff) + λ
2
2m×Heff .

Multiplying both sides of (1a) by λ1 and adding the resulting equation to the
above equation, we deduce that m satisfies (4).

Now assume that m is a solution to (4). On multiplying both sides of this
equation by λ2m using the vector product and noting

m× (m×mt) = (m ·mt)m− |m|2mt = −mt , (6)

we deduce
λ1λ2m×mt − λ

2
2mt = λ2µm× (m×Heff) .
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Subtracting this equation from equation (4) times λ1 and dividing both sides
of the resulting equation by µ, we obtain (1a). This proves the lemma. ♠

Before presenting the variational form of this problem, it is necessary to
introduce the function spaces

H1(D,R3) =
{
u ∈ L2(D,R3) |

∂u

∂xi
∈ L2(D,R3) for i = 1, 2, 3

}
,

H(curl; D̃) =
{
u ∈ L2(D̃,R3) | ∇× u ∈ L2(D̃,R3)

}
.

Here L2(Ω,R3) is the usual space of Lebesgue integrable functions defined
on Ω and taking values in R3.

Following Lemma 1, instead of solving (1a)–(3) we solve (1b)–(4). A varia-
tional form of this problem is as follows. For all φ ∈ C∞(DT ,R3) and ζ ∈
C∞(D̃T ,R3) , find m ∈ H1(DT) and H ∈ L2(D̃T) such that Ht ∈ L2(D̃T) and
∇×H ∈ L2(D̃T) to satisfy the Landau–Lifshitz–Gilbert (llg) equation

λ1

∫
DT

mt ·φdxdt+ λ2
∫
DT

(m×mt) ·φdxdt

= µ

∫
DT

∇m · ∇(m×φ)dxdt+ µ

∫
DT

(m×H) ·φdxdt , (7)

and Maxwell’s equation

µ0

∫
D̃T

Ht · ζdxdt+ σ
∫
D̃T

∇×H · ∇ × ζdxdt = −µ0

∫
D̃T

m̃t · ζdxdt . (8)

In the following section we introduce a finite element scheme to approximate
the solution (m,H) of (7)–(8).

3 The finite element scheme

Let Th be a regular tetrahedrisation of the domain D̃ into a tetrahedra of
maximal mesh size h, and let Th|D be the restriction of Th to the domain D.
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The set of N vertices is Nh := {x1, . . . , xN} and the set of M edges is Mh :=
{e1, . . . ,eM} .

To discretise the llg equation (7) we introduce the finite element space Vh
of all continuous piecewise linear functions on Th|D , which is a subspace
of H1(D,R3) . A basis for Vh is chosen to be (φn)16n6N , where

φn(xm) = δn,m ,

and δn,m is the Kronecker delta. The interpolation operator from C0(D,R3)
onto Vh is

IVh
(v) =

N∑
n=1

v(xn)φn for all v ∈ C0(D,R3) .

To discretise Maxwell’s equation (8), we use the space Yh of lowest order edge
elements of Nedelec’s first family [10] which is a subspace of H(curl; D̃) .

For a function u which is Lebesgue integrable on all edges inMh , we define [10]
the interpolation IYh

onto Yh as

IYh
(u) =

M∑
q=1

uqψq for all u ∈ C0(D̃,R3) ,

where
uq =

∫
eq

u · τq ds ,

in which τq is the unit vector in the direction of edge eq.

Fixing a positive integer J, we choose the time step k = T/J , and define
tj = jk for j = 0, · · · , J . The functions m(tj, ·) and H(tj, ·) are approximated
by m(j)

h ∈ Vh and H(j)
h ∈ Yh , respectively, for j = 1, 2, . . . , J . Since

mt(tj, ·) ≈
m(tj+1, ·) −m(tj, ·)

k
≈ m

(j+1)
h −m

(j)
h

k
,
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we evaluate m(j+1)
h from m(j)

h using

m
(j+1)
h :=m

(j)
h + kv

(j)
h , (9)

where v(j)h is an approximation of mt(tj, ·) . However, to maintain the con-
dition |m

(j+1)
h | = 1 , we normalise the right hand side of (9) and therefore

define m(j+1)
h belonging to Vh by

m
(j+1)
h = IVh

(
m

(j)
h + kv

(j)
h

|m
(j)
h + kv

(j)
h |

)
=

N∑
n=1

m
(j)
h (xn) + kv

(j)
h (xn)∣∣∣m(j)

h (xn) + kv
(j)
h (xn)

∣∣∣φn .
Hence it suffices to propose a scheme to compute v(j)h .

Motivated by mt ·m = 0 , we find v(j)h in the space W(j)
h defined by

W(j)
h :=

{
w ∈ Vh | w(xn) ·mj

h(xn) = 0, n = 1, . . . ,N
}
. (10)

Givenm(j)
h ∈ Vh , if (7) is used to compute v(j)h , an approximation tomt(tj, ·) ,

then a different test space from Vh is required because the test function φ
in (7) is not perpendicular to m, unlike mt. To circumvent this difficulty, we
use (6) to rewrite (7) as

λ2

∫
DT

mt ·wdxdt− λ1
∫
DT

(m×mt) ·wdxdt

= −µ

∫
DT

∇m · ∇wdxdt+ µ
∫
DT

H ·wdxdt (11)

where w = m ×φ . Now both mt and w are perpendicular to m for all
(t, x) ∈ DT . Hence, given m(j)

h ∈ Vh and H(j)
h ∈ Yh , we compute the

approximations v(j)h and H(j+1)
h of mt(tj, ·) and H(tj+1, ·) , respectively, as

follows. Find v(j)h ∈W(j)
h and H(j+1)

h ∈ Yh satisfying, for all w(j)
h ∈W(j)

h and
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ζh ∈ Yh ,

λ2

∫
D

v
(j)
h ·w

(j)
h dx− λ1

∫
D

(m
(j)
h × v

(j)
h ) ·w(j)

h dx

= −µ

∫
D

∇
(
m

(j)
h + θkv

(j)
h

)
· ∇w(j)

h dx+ µ

∫
D

H
(j+1/2)
h ·w(j)

h dxdt , (12)

and

µ0

∫
D̃

dtH
(j+1)
h · ξh dxdt+ σ

∫
D̃

∇×H(j+1/2)
h · ∇ × ξh dxdt

= −µ0

∫
D̃

v
(j)
h · ξh dxdt . (13)

Here,

H
(j+1/2)
h :=

H
(j+1)
h +H

(j)
h

2
and dtH

(j+1)
h := k−1(H

(j+1)
h −H

(j)
h ) .

The parameter θ is arbitrarily chosen to be in [0, 1] . The method is explicit
when θ = 0 and fully implicit when θ = 1 .

The algorithm for the numerical approximation of the mllg system is sum-
merised in Algorithm 1. By the Lax–Milgram theorem, for each j > 0 there
exists a unique solution (v

(j)
h ,Hj+1

h ) ∈W(j)
h ×Yh of equations (12)–(13). Since∣∣∣m(0)

h (xn)
∣∣∣ = 1 and v

(j)
h (xn) ·m(j)

h (xn) = 0 for all n = 1, . . . ,N ,

and j = 0, . . . , J , by induction,∣∣∣m(j)
h (xn) + kv

(j)
h (xn)

∣∣∣ > 1 and
∣∣∣m(j)

h (xn)
∣∣∣ = 1 .

Therefore, the algorithm is well defined.

We now comment on the construction of basis functions for W(j)
h and Yh

which are necessary in solving (12)–(13) in Step 5 of Algorithm 1.
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Algorithm 1: Numerical approximation of the mllg system
1 begin
2 Set j = 0 ;
3 Choose m0

h = IVh
m0 and H0

h = IYh
H0 ;

4 for j = 0, 1, 2, . . . , J− 1 do
5 Solve (12) and (13) to obtain (v

(j)
h ,H(j+1)

h ) ∈W(j)
h × Yh ;

6 Define

m
(j+1)
h (x) :=

N∑
n=1

m
(j)
h (xn) + kv

(j)
h (xn)∣∣∣m(j)

h (xn) + kv
(j)
h (xn)

∣∣∣φn(x) ;
7 end
8 end

3.1 A basis for W(j)
h

From (10), the basis functions of W(j)
h at each iteration depend on the

solution m(j)
h computed in the previous iteration. Therefore they must be

computed again for each iteration of j in Algorithm 1. For each w ∈W(j)
h , let

αn = w(xn) n = 1, · · · ,N ,

and let α(1)
n and α(2)

n be two basis vectors of the plane tangential to the vector
m

(j)
h (xn) = (u1,u2,u3)T ∈ R3 . It follows from (10) that

αn = βnα
(1)
n + γnα

(2)
n ,

for some real numbers βn and γn . In our computation we take

α(1)
n = Am

(j)
h (xn) and α(2)

n =m
(j)
h (xn)× α(1)

n ,
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where

A =

u2u3 1 1

−1 u2u3 1

−1 −2 u2u3

 .

A basis for W(j)
h is defined from bases of the 2D planes which are perpendicular

to m(j)
h (xn) for all n = 1, . . . ,N . Therefore dim(W(j)

h ) = 2N and w is
expressed in terms of α(1)

n and α(2)
n by

w(x) =

N∑
n=1

(
βnα

(1)
n + γnα

(2)
n

)
φn(x) . (14)

It can be shown that
{
(α

(1)
n φn,α

(2)
n φn)

}
16n6N

is a basis for the vector

space W(j)
h .

3.2 A basis for Yh

A basis {ψ1, . . . ,ψM} of Yh is defined as follows [10, Section 5.5.1]. Consider
an edge eq, q = 1, . . . ,M , and let K be the tetrahedron having eq as an edge.
Let λ(1)q and λ(2)q be the barycentric coordinate functions corresponding to
the endpoints of eq. We define

ψq|K := λ(1)q ∇λ(2)q − λ(2)q ∇λ(1)q .

The relation
∇×

(
ψq|K

)
= 2∇λ(1)q ×∇λ(2)q ,

is useful in the computation of ∇×
(
ψq|K

)
.
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4 Numerical experiments

In order to carry out physically relevant experiments, the initial conditions
of the mllg equations should be chosen to satisfy the divergence-free con-
straint [7]

div(H0 + χDm0) = 0 in D̃,

where χD is the characteristic function of D. This is achieved by taking

H0 = H
∗
0 − χDm0 , (15)

where H∗
0 is some function defined on D̃ satisfying divH∗

0 = 0 . In our
experiment, for simplicity, we choose H∗

0 to be a constant.

We solve the standard problem #4 proposed by the Micromagnetic Modeling
Activity Group at the National Institute of Standards and Technology [5]. In
this model, the initial conditions m0 and H0 , and the effective field Heff are

m0 = (1, 0, 0) in D , H∗
0 = (0.01, 0.01, 0.01) in D̃ , Heff =

2A

µ∗
0Ms

∆m+H .

The parameters
λ1 = −

γ

1+ α2
and λ2 =

γα

1+ α2
,

where the positive physical constants are the damping parameter α, the
gyromagnetic ratio γ, the vacuum permeability µ∗

0 , the exchange constant A,
and the magnitude of magnetisationMs. The values of the physical constants
are

α = 1 , σ = 10−13 S−1ms−1 , µ0 = 2.211739× 109Hm−1s−1 ,
A = 1.3× 10−11 Jm−1 , µ∗

0 = 1.25667× 10−6Hm−1 ,
γ = 2.2× 109mA−1s−1 , Ms = 8× 105Am−1 .

The domains D and D̃ are chosen to be

D = (0, 0.5)× (0, 0.125)× (0, 0.003) ,
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Figure 2: The magnetisation domain D (in red) is a thin film. The magnetic
domain D̃ is in blue.

and
D̃ = (−0.583, 1.083)× (−0.146, 0.271)× (−0.767, 0.770) ,

with distances measured in µm; see Figure 2. The domain D is uniformly
partitioned into cubes of dimensions 0.042× 0.010× 0.003µm3 , where each
cube consists of six tetrahedra. We generate a nonuniform mesh for the
magnetic domain D̃ in such a way that it is identical to the mesh for D in
the region near D, and the mesh size gradually increases away from D. A
cross section of the mesh at x3 = 0 is displayed in Figure 3.

At each iteration of Algorithm 1, the system to be solved is linear and of
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Table 1: A comparision between Baňas, Bartels and Prohl’s (bbp) method
and our method.

bbp Our method
Discrete system nonlinear linear

(uses fixed-point iteration) (solved directly)
Degrees of freedom 3N+M 2N+M
Required condition k = O(h2) None
Basis functions same different
of solution space for all iterations in each iteration

size 2N +M . A comparision of our method and the method proposed by
Baňas, Bartels and Prohl [2] is presented in Table 1.

For j = 0, 1, 2, . . . , let E(j)
T be the total energy at time tj = jk defined by

E
(j)
T :=

2σA

Ms

∫
D

|∇m(j)
h |2 dx+ 2σµ0

∫
D̃

|H
(j)
h |2 dx+

λ2

µ

∫
D̃

|∇×H(j)
h |2 dx

:= E(j)
ex + E

(j)
H + E

(j)
E ,

where E
(j)
ex , E

(j)
H and E

(j)
E are the exchange energy, magnetic field energy and

electric field energy, respectively. Our computation shows that the total
energy decreases, that is

E
(j+1)
T 6 E

(j)
T for all j > 0 ; (16)

see Figure 4. The decrease of the discrete energy E
(j)
T , j = 1, . . . , J , suggests

the gradient stability of the mllg solutions. In Figure 4 we plot different
scaled versions of the different energies versus log t . The change in E

(j)
T is

dominated by the change in E
(j)
H .

Figure 4 also shows that the sequence {∇m(j)
h }j>0 is bounded in L2(D) ,

and the sequences {H(j)
h }j>0 and {∇×H(j)

h }j>0 are bounded in L2(D̃) . In a
forthcoming paper, we will show that our numerical solution converges to
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Figure 3: Mesh for the domain D̃ at x3 = 0 .

a weak solution of the problem (1b)–(4) by proving that the inequality (16)
holds.
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