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Abstract

An Open Computing Language implementation of a level set solver
for 2D and 3D image segmentation tasks is presented. An adaptive
time stepping algorithm is implemented using an optimised parallel
reduction kernel to compensate for a loss of algorithmic parallelisation.
For a 2D data set (256 x 256) the execution is accelerated by a factor of
20 in the adaptive case and 100 in the non-adaptive case compared to a
CPU implementation, facilitating real time interactive parameter tuning.
For a 3D data set (384 x 397 x 41) the acceleration factors are 200 and
270 for the adaptive and non-adaptive cases, respectively. Although
a single iteration of the adaptive method is slower compared to the
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non-adaptive scheme, it automatically enforces the Courant—Friedrichs—

Lewy condition and reduces the number of user-tuned parameters
while safely allowing larger time steps. Open Computing Language

optimisations and techniques are discussed.
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The image segmentation problem is to identify objects within images and has
become a staple of image analysis and computer graphics literature over the
last two decades. Common to all segmentation methods is the need for user
interaction in the form of parameter tuning and the specification of initial
conditions. With large datasets such an ad hoc approach is time consuming.
This prevents real time user interaction with segmented objects, which is an
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important aspect of modern applications. With the rise of graphics processing
units (GPUs) as accelerators for general purpose computing (generally referred
to as GPGPU) [15], several researchers sought to address this problem by
developing GPU implementations of image segmentation algorithms. These
range from applications using graphics primitives [11] to modern approaches
utilising NVIDIA’s compute unified device architecture (CUDA) [9].

In contrast to earlier work, Open Computing Language (OpencL) [7] is used
for its portability across devices and its cross-vendor support. OpenCL is
an open framework for programming heterogeneous computing platforms
involving, for example, CPUs, GPUs and digital signal processors, collectively
known as OpenCL compute devices. It provides a language based on C99
for writing kernel functions which are executed as work items (threads) on
compute devices, and also an application programming interface for managing
the platforms, compute queues and memory operations. The focus here is on
the use of OpenCL in an environment with a single GPU which executes kernel
functions in parallel under a single instruction multiple data (SIMD) archi-
tecture, and a ‘host’ CPU which provides control over memory management,
event synchronisation and compute device instruction queueing.

A PDE based level set segmentation algorithm is presented, and an OpenCL
implementation of the associated full grid solver is given for both 2D and
3D applications. Important GPU optimisations and techniques are discussed,
particularly in relation to a parallel reduction kernel used for implementing
an adaptive time stepping algorithm. A performance analysis indicates
that on a single Fermi Tesla M2050 GPU interactive speeds are achievable for
moderate sized data sets in 2D and 3D for both the adaptive and non-adaptive
algorithms, despite the loss of algorithmic parallelism in the adaptive case.
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2 Level set segmentation

The level set method [14] is a numerical method for solving multidimensional
front and surface propagation problems in an Eulerian framework. In partic-
ular, it is used extensively in image processing and image analysis, not only
in segmentation applications [10, 11, 12|, but also in image denoising and
restoration applications [13|. The level set framework was also successfully
applied in a diverse range of fields such as computational fluid dynamics and
machine learning [18], with a thorough introduction to the field provided by
Sethian [16].

To formulate the level set method, consider the time evolution of a closed,
smooth d — 1 dimensional front denoted by I'(t) at time t. For example,
if d = 2 then I' encodes the evolution of a smooth closed contour in the
plane. The front moves along its outward normal vector field with a speed
Fre(x,t) : T(t) x R" — R, which may depend on local geometric properties
of the front and a set of parameters ©. The key observation of Osher and
Sethian [14] was that one can treat the front as the (zero) level set of a
function ¢ : R x RT — R, and simply derive a Hamilton-Jacobi type
evolution equation for ¢. Under general conditions the desired evolution of
the front is captured in the evolution of ¢ [6].

The front is defined as
Nt) :={x eR: p(x,t) =0}. (1)

Consider a trajectory x(t) of a point on the front I'. Using (1) to compute
the total derivative, one obtains

%

5¢ XUt +TFre (x(t), 1) [V (x(t), )| = 0. (2)

To convert (2) to an initial value problem on RY, the normal speed Frg
must be extended to R and an initial condition ¢y proposed. The extended
function is denoted by Fg and satisfies Fol. = Fro. In this application there
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is no need to explicitly compute such an extension as the speed function is
well defined away from the front.

2.1 Initial conditions

The initial condition ¢o must satisfy ¢|r(0) = 0 and is typically chosen as the
signed distance function (SDF) to the initial front:

bulx) — {d(x, rO))  if x is ‘inside’ T'(0)

’ 3
—d (x,T(0)) if x is ‘outside’ T'(0), (3)

where d (x,T'(0)) = minper(o) || X — pl|2 is the Euclidean point-set distance. To
compute ¢o, Terriberry’s implementation of the SDF algorithm [5] of O(N)
complexity was used, where N is the number of pixels in the image. There
are two primary technicalities relating to this choice of ¢ which are discussed
below.

Firstly, ¢o is not differentiable on the closure of its skeleton S [2], that is, the
set of points which are equidistant to two or more parts of the front. Thus a
weak formulation is required. Under the curvature dependent speed function of
Section 2.2, the evolution remains smooth and a physically reasonable unique
entropy solution is attained using a Huygen’s principle construction [14]. The
relevant numerical schemes are discussed in Section 3.

Secondly, ¢ does not remain an SDF as the evolution unfolds since |V |
can become unbounded near the zero level set. This was demonstrated for
standard Hamilton—-Jacobi equations [6], and is well described in the level set
literature [13, 16]. That is, the level sets ‘bunch up’ and numerical instability
can arise as spatial derivative computations lose accuracy. To alleviate this, a
simple approach was used to extract the front (zero level set of ¢) periodically,
reinitialising ¢ to be the SDF to the current front, and allowing the evolution
to continue. Other more sophisticated methods abound, typically based on
modifying the level set PDE itself or introducing new PDEs which in effect
enforce the property |[V¢| =1 for all t [1, 6, 10].
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In terms of segmentation, the initial contour is specified by a user, ¢y com-
puted, and the front is evolved until some implicit stopping criteria, which is
built in to the speed function, is fulfilled. Often these stopping criteria are
derived from a pre-processed edge-enhanced image, to encourage the front to
attain the shape of the boundary [12].

2.2 Speed function

The key element characterising the evolution of ¢ is the speed function Fg.
For simplicity, the speed function proposed by Lefohn et al. [11] is used, which
depends on three scalar parameters © = {x, €, T}:

Fo(x,t) = aD(x) — (1 — a)k(x, t), (4)

where k(x,t) =V - [Vcb(x, t)/!Vd)(x,t)I} is the mean curvature and D(x) =
€—|I(x)—T]| in effect defines a region of interest for the segmentation using the
pixel intensity I, an intensity threshold T and a band width e. If I(x) is inside
the region to be segmented, defined as an € band around the intensity T, then
D(x) > 0 and the front expands to enclose x, and vice versa. The parameter
« € [0, 1] controls the trade off between advection dominated and curvature
dominated evolution.

In summary, one has the initial value problem on R¢

3% 1) = [(1 — alx, 1) — aD()] IV (x, 1), )

$(x,0) = do(x).

In Section 3 the numerical solution of the level set PDE (5) with speed
function (4) is discussed.
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3 Discretisation

The first order scheme of Lefohn et al. [11] for the 2D problem is presented,
with the 3D case being a straightforward generalisation. Using standard
notation ¢ = ¢p(iAx,jAy,nAt), one has the forward Euler scheme

b = fy — ARV, (6)

n o __ R _ n
where FY; = aDyj — (1 — o) .

Assuming that Ax = Ay = 1, a standard first order upwind scheme [11,
14] was used to discretise the gradient operator in (5). Upwind schemes
choose an appropriate spatial finite difference operator depending on the
characteristics of the underlying PDE and are ubiquitous in the numerical
solution of hyperbolic PDEs. Here, for the discretisation of [Vl if F{; >0,
then one uses

IVd){ijz =max(diq; — ¢, 0)2 + min (! 55— & 0)?

+ max(dy, — i, 0)% 4+ min(¢p™ = 2];1,0)2, (7)
and if F; <0, then one uses

|Vq){1’j’2_m1n( e n O) + max(p! n 0)2

1,j7 L wi-1js
2
+ min(¢f  — b, 0)? + max(¢p™ 5= ¢i5.4,0)7. (8)

The curvature component is a parabolic term and could be approximated
using central differences [14]. However, the difference of normals method
is used as it is claimed that the central difference approach can lead to
instabilities for more complicated speed functions which will be considered
in future work [11]. This method computes normals at half grid points and
takes first order differences to approximate their rate of change.
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First the normals are computed:

in+1j7¢?j
2
\/ _(bn 2, LR 1+¢1J+1 Ty
1 i
+ 1+ ) ]
nt = 9
1]+1 ¢1] ’ ( )

2
2, by i ]]+]+¢1+]] P
1)+l 1]

¢IL] 111]
B \/cb; ) (5
S

2

i—1,j+1 d)'l. 1,j— l+¢1]+l ¢1] 1>

- ¢?J 1] 1 ’ (10)
2 (gl el el )P
\/(4)117) ?.,j71) +< 1 s) 1 ,)4 1 s) 1 5)

The approximation to the curvature is then

Ki; = (ny —n )+ My —ny). (11)
The first order forward Euler time stepping of (6) introduces stability con-
cerns.! Here, adaptive time stepping is used to choose At(t) such that the
CFL condition is always met. For a problem on an artibrary dimensional
domain, the CFL condition in terms of the normal speed is

.
Fmax (t) ,

where Fpax(t) = maxyex [Fo(x,t)] and C = 0.9 < 1. The condition (12)
ensures that the speed computed at each pixel does not exceed one pixel per
time step, and thus guarantees that the mathematical domain of dependence
is contained in the numerical domain of dependence.

At(t) < (12)

Finally, on a finite domain the question of boundary conditions arises. An
additional ring of artificial or ‘ghost’ cells/pixels was added around the
computational domain and assigned the values of their nearest neighbour in
the original image at each time step.

!Semi-Lagrangian methods were introduced in the context of level set PDEs [17]. These
are are explicit yet unconditionally stable and will be the subject of further investigation.
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4 OpenCL implementation

In opencL the global problem space is broken into individual work items
(threads) which execute instances of kernel functions on the GPU’s compute
units (CUs). Work items are collected together to form work groups (thread
blocks) which are then distributed across available cUs. Within each work
group, work items share fast local memory which provides a type of cache
for the slower global memory (approximately 50-100 times faster memory
operations). Individual work items also have access to private memory
(registers) local to the CU on which they execute.

Work items within work groups are executed in a SIMD fashion in blocks of
32 threads called ‘warps’. If two threads executing in the same warp have
different branches of execution, then the execution of that warp is serialised
and a phenomenon called ‘warp divergence’ occurs. This problem plagues
upwind schemes as neighbouring pixels can have different upwind directions,
as in equations (7) and (8). To prevent warp divergence, multiplicative masks
are applied to remove conditional branches in the kernel.

The number of work groups concurrently executing per CU is limited by
the availability of registers and local memory. These limits can result in
under utilisation of CUs and a reduction in performance, particularly for
memory bound kernels. The work group size must therefore be carefully
chosen to achieve optimal performance and hide latency associated with
memory transfers. An additional complication is that the work group size
must evenly divide the global problem size. The original input data is padded
where appropriate to avoid this problem, a warp divergence free alternative
to the common technique of enqueueing the kernel with an inflated global
size and masking fictitious work items. Finally, since the unit of execution is
a warp, the work group size should be chosen to be a multiple of the warp
size to maximise throughput.

Data transfer between CPU and GPU is between CPU RAM and GPU global
memory over PCI-E, and can constitute a performance bottleneck. Iterative
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schemes which require only an initial data transfer (of ¢g) from host CPU to
GPU and a final data transfer to collect the results minimise this overhead.
Therefore, with a fixed time step At, the finite difference scheme outlined
in Section 3 is well suited for GPU implementation, as one need only write
a kernel which applies the finite difference stencil to an single pixel x to
update ¢(x,t) to d(x,t + At(t)). Furthermore, the purely input image
dependent component of the speed term is pre-computed and loaded into
GPU global memory before the iterations begin.

The adaptive scheme using (12) presents some difficulty as the global max-
imum pixel speed must be computed at every iteration before the update
in (6) can occur. Due to the associative and commutative nature of the
maximum operator, a parallel reduction algorithm [8] which can be efficiently
implemented on the GPU is used, in conjunction with two additional kernels
for compute and updating, providing the necessary global synchronisation.

First, the compute kernel computes the curvature (9, 10, 11), speed (6), and
gradient magnitude (7, 8) at a particular pixel, writing F{} ‘Vd){fj‘ and !F{‘]‘
to global memory buffers. The reduction kernel then computes F .. (t) in-
place from the global memory buffer containing !F?J , using local memory
optimisations such as sequential addressing to avoid memory bank conflicts.
Next, the host CPU reads the reduction result and computes the maximum CFL
satisfying time step At(t) according to equation (12), before enqueueing the
final kernel to perform the update from t to t+1 in (6) by re-using the buffer
consisting of the product F; |Vd){‘7].{ . Finally, the required boundary extension
is simply performed by enqueueing the relevant kernels with work item offsets
and performing copy instructions directly between the GPU buffers.

5 Results

Figure 1 illustrates the effect of changing « on the segmentation results for a
2D cross section of a femural bone taken from a micro-CT scan of a mouse [4].
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Figure 1: The effect of « on the final segmentation with T = 85, € = 45.
(Left) Image from micro-CT scan, with the initial front used for computing ¢,.
(Middle) Curvature dominated, o« = 0.01. (Right) Advection dominated,
o = 0.99. Data courtesy of Prof. Peter Croucher of the Garvan Institute.

The mouse was suffering from multiple myeloma, a rare type of bone marrow
cancer which results in holes forming in the bone. The results were said to
have converged when the number of pixels changing in the final mask between
time steps was at most two for at least ten consecutive iterations, though
many other criteria have been suggested [3].

Figures 2 and 3 illustrate the effect of work group size on the average speed-up
achieved by the OpenCL implementation in the 2D case. The average speed-up
of the adaptive and non-adaptive time stepping methods are compared for
different hardware over 1000 iterations. The reinitialisation procedure is not
included in the profiling results; only the core computation is profiled. It is
also assumed that the GPU buffers were appropriately initialised. Furthermore,
the work group size for the reduction kernel was fixed at 128 work items, as
this was found to be optimal for both hardware configurations. The work
group size corresponds to the compute/update kernels in the adaptive case.
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Speed Up Factor 2D - NVIDIA Geforce 9400M
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Figure 2: Host cpu: 2.53 GHz Intel Core 2 Duo, 4 GB 1067 MHz DDR3, GPU:
NVIDIA Geforce 9400M, cPU = 9.37's (non-adaptive) and 9.56s (adaptive).

The average speed-up is

— N
cru 3 cru

Si=— = (13)

: =N ,

GFU 13N aru;
where CPUy, ..., CPUy are independent samples of the CPU execution time,
GPUq,...,GPUyN are independent samples of the GPU execution time, and

thus CPU and GPU are independent.

Both the adaptive and non-adaptive algorithms provide significant speed-ups
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Speed Up Factor 2D - Fermi Tesla M2050

110

T T T
Adaptive =
100 - Non-Adaptive % e

9 | .
80 X i
70 | .
60 | .
50 | .
40 .
30 | .
20 | x =

10 | .
[

0 " 1 1 1
1 4 16 64 256

Threads/Work Group

Figure 3: Host cpU: Dual Xeon 8-core E5-2650, GPU: NVIDIA Fermi Tesla
M2050, cPU = 7.65s (non-adaptive) and 7.80s (adaptive).

when implemented on the GPUs using optimisations described in Section 4 and
an appropriate work group size. In particular, note the improved performance
when the work group size is a multiple of the warp size, in this case 32.

Figures 4 and 5 show the acceleration factors achieved for both algorithms
when operating on a subset of the full 3D mouse data set (of dimension 384 x
387 x 41) over 25 iterations. The full data set (384 x 397 x 346) was not used
as it exceeded the maximum global memory buffer size of the Geforce 9400M.
Although multiple kernel invocations combined with host GPU data transfers
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Speed Up Factor 3D - NVIDIA Geforce 9400M
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Figure 4: Host cpu: 2.53 GHz Intel Core 2 Duo, 4 GB 1067 MHz DDR3, GPU:
NVIDIA Geforce 9400M. cPU = 42.95s (non-adaptive) and 45.07 s (adaptive).

can be used to address this issue [9], a more efficient approach is to invoke
multiple GPUs in a cluster environment using OPEN MPI. A comparison of
these two approaches is the subject of future work.

Further speed-ups might be expected with local memory usage during the
core compute, as currently only the reduction kernel employs local memory.
Nonetheless it has been demonstrated that interactive speeds are achievable
with OpencCL.
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Speed Up Factor 3D - Fermi Tesla M2050
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Figure 5: Host cpU: Dual Xeon 8-core E5-2650, GPU: NVIDIA Fermi Tesla
M2050, cpu = 34.98s (non-adaptive) and 37.40s (adaptive).
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