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Abstract

Texture enhancement is an important component of image pro-
cessing that finds extensive application in science and engineering.
The quality of medical images, quantified using the imaging texture,
plays a significant role in the routine diagnosis performed by medical
practitioners. Most image texture enhancement is performed using
classical integral order differential mask operators. Recently, first order
fractional differential operators were used to enhance images. Exper-
imentation with these methods led to the conclusion that fractional
differential operators not only maintain the low frequency contour
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features in the smooth areas of the image, but they also nonlinearly
enhance edges and textures corresponding to high frequency image
components. However, whilst these methods perform well in particular
cases, they are not routinely useful across all applications. To this
end, we apply the second order Riesz fractional differential operator
to improve upon existing approaches of texture enhancement. Com-
pared with the classical integral order differential mask operators and
other first order fractional differential operators, we find that our new
algorithms provide higher signal to noise values and superior image
quality.
Subject class: 26A33, 92C55
Keywords: Fractional calculus, texture enhancement, image processing
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1 Introduction

Texture enhancement is one of the most important issues in image processing
and plays a substantial role in medical imaging [1]. The quality of images,
especially the texture, is increasingly significant for clinical diagnosis of
pathology.
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Current image enhancement algorithms are typically based on integral order
differential mask operators that include the Sobel, Roberts, Prewit and
Laplacian techniques [1, 2]. After a comparison of images enhanced using
first and second order derivatives, it was concluded that the integral order
differential operator has several shortcomings. In particular, processing using
first order masks produces wide edges, while second order masks are sensitive
to noise and generate double responses when the grey scale changes [2, 3].

Recently, the advantages of fractional calculus were widely demonstrated
for various applications in science and engineering [4, 5]. These successes
motivated researchers to apply fractional derivatives to digital image process-
ing [3, 6, 7, 8, 9, 10, 11]. Zhang et al. [3] developed an algorithm based on the
Riemann–Liouville definition and applied the resulting model with a fractional
derivative index between one and two to enhance the texture and edges of a
digital image. Sejdić et al. [6] investigated the use of the fractional Fourier
transform in signal processing. Pesquet-Popescu and Véhel [7] developed
stochastic fractal models for image processing. Mathieu et al. [8] applied
fractional differentiation for edge detection. Gao et al. [9] applied a quaternion
fractional differential based on the Grünwald–Letnikov definition to a colour
image. Gao et al. [10] applied an improved fractional differential operator
based on a piecewise quaternion for image enhancement. Pu et al. [11] pro-
posed various algorithms based on the Grünwald–Letnikov definition which
work well for grey images but produce colour images which are distorted in
the rgb (red, green and blue) space.

In contrast to the standard derivative, the fractional derivative of a direct
current or low frequency signal is usually nonzero [3, 9, 11]. Thus, the
fractional differential not only nonlinearly preserves the contour features of
the smooth area, but maintains high frequency edge features in those areas
where the grey changes considerably. It also preserves high frequency texture
detailed features in those areas where the grey does not change significantly.

We build upon the classical and first order fractional mask approaches to
overcome defects in enhancement and colour image distortion by investigat-
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ing the performance of two fractional differential algorithms based on the
Riesz fractional differential operator [5]. In Section 2 we present the theo-
retical analysis for implementing fractional differential masks and define two
fractional derivative algorithms, fcd-1 and fcd-2, based on the Riesz frac-
tional differential operator. Finally, we illustrate that our algorithms provide
higher precision and better visual effects for texture enhancement than Pu’s
algorithm (yifeipu-1) [11] when applied to medical imaging applications.

2 The improved fractional differential mask

The v order (0 < v 6 2) Riesz fractional derivative ∂vu(t)/∂|t|v for the infinite
interval −∞ < t < +∞ is [5]

∂vu(t)

∂|t|v
= −cv

(
∂v

∂tv
+

∂v

∂(−t)v

)
u(t) , (1)

where cv = [2 cos(πv/2)]−1 with v 6= 1 , p− 1 < v 6 p 6 2 for p ∈ N , and

∂vu(t)

∂tv
=

1

Γ(p− v)

∂p

∂tp

∫ t
−∞

u(ξ)dξ

(t− ξ)v+1−p
, (2)

∂vu(t)

∂(−t)v
=

(−1)p

Γ(p− v)

∂p

∂tp

∫+∞
t

u(ξ)dξ

(ξ− t)v+1−p
. (3)

The Riesz fractional derivative is approximated using the second order frac-
tional centered difference scheme given by Ortigueira [12] with step h,

∂vu(t)

∂|t|v
= −

1

hv

∞∑
k=−∞

(−1)kΓ(v+ 1)

Γ( v
2
− k+ 1)Γ( v

2
+ k+ 1)

u(t− kh) +O(h2) . (4)

We define two fractional differential algorithms, fcd-1 and fcd-2, based on
the Riesz fractional differential operator (1). Firstly, when 0 < v < 1, (4) is
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rewritten as

∂vu(t)

∂|t|v
= −

1

2 cos(πv/2)

(
∂v

∂tv
+

∂v

∂(−t)v

)
u(t)

≈ −
1

2 cos(πv/2)hv

[ ∞∑
k=0

ωku(t− kh) +

0∑
k=−∞ωku(t− kh)

]
, (5)

where

ω0 = −
Γ(1− v/2)

vΓ(1+ v/2)Γ(−v)
,

ωk =
(−1)k+1Γ(v/2)Γ(1− v/2)

Γ(v/2− k+ 1)Γ(v/2+ k+ 1)Γ(−v)
for k = ±1,±2, . . . . (6)

In the context of medical images, Zhang et al. [3] and Pu et al. [11] discuss the
biggest variable of the grey level being limited, and the shortest distance for a
change in the grey level image must be at an adjacent pixel. Thus, pixels are
used to measure the duration of a two dimensional digital image s(x,y) with
respect to two variables x and y. As an example, for a two dimensional digital
image s(x,y) at pixel (x∗,y∗) , on the positive x-axis within the region [0, x∗] ,
the N + 1 pixels are sN(x∗,y∗) = s(0,y∗) , . . . , sk(x∗,y∗) = s(x∗ − kh,y∗) ,
. . . , s0(x∗,y∗) = s(x∗,y∗) , where h = x∗/N, and N is the number of divisions.
Similar results hold for the other directions, such as negative x-axis, negative y-
axis, positive y-axis and so on. Generally, we assume that h = 1 . After
truncation, the anterior n+ 1 approximate fractional centered difference of
the fractional partial differential on the positive x-axis is

∂vs(x,y)
∂xv

∼= −
1

2 cos(πv/2)hv

n∑
k=0

ωks(x− kh,y) , 0 < v < 1 . (7)

We implemented fractional derivative masks along eight symmetric directions,
the negative x-axis, positive x-axis, negative y-axis, positive y-axis, left
downward diagonal, right upward diagonal, left upward diagonal, and right
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Figure 1: Fractional differential mask for four of the eight directions: (a) W∗
1 ,

negative x-axis; (b) W∗
2 , positive x-axis; (c) W∗

3 , negative y-axis; (d) W∗
4 ,

positive y-axis.

downward diagonal, respectively denoted by W∗
l for l = 1, 2, . . . , 8 (see

Figures 1 and 2). These directions ensure that the fractional differential
masks have an anti-rotation capability. The masks are W∗

l =Wl(i, j) where
Ml 6 i 6 Nl , Pl 6 j 6 Ql , and the details of Ml, Nl, Pl and Ql for
l = 1, 2, . . . , 8 are shown after (9).

In Figures 1 and 2, Cs0 is the mask coefficient associated with the pixel of
interest. In general, to ensure that the fractional differential mask has a
certain center, n is chosen as an even number. When n = 2m is an even
number, one implements a (2m+ 1)× (2m+ 1) fractional differential mask.
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. . . . . . 0
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Figure 2: Fractional differential mask for four of the eight directions: (a) W∗
5 ,

left downward diagonal; (b) W∗
6 , right upward diagonal; (c) W∗

7 , left upward
diagonal; (d) W∗

8 , right downward diagonal.

Digital image processing is based on direct processing for discrete pixels, and
the algorithm also describes an airspace filtering scheme [11]. The principle of
the airspace filter is to move the mask pixel by pixel. There are considerable
differences in the properties of grey images and colour images. Thus, there are
two algorithms for the fractional differential mask, one for grey images and the
other for colour images. To treat an Nx×Ny digital grey image s(x,y) , where
Nx and Ny are the dimensions of the image matrix, we perform a convolution
filter on the eight symmetric directions with a (2m + 1) × (2m + 1) mask,
and proposed that the fractional differential mask on the eight directions be
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computed using

sl(x,y) =

Nl∑
i=Ml

Ql∑
j=Pl

Wl(i, j)s(x+ i,y+ j) for l = 1, 2, 3, 4 , (8)

sl(x,y) =

Nl∑
i=Ml

Ql∑
j=Pl

2−v/2Wl(i, j)s(x+ i,y+ j)

+(1− 2−v/2)Wl(0, 0)s(x,y) for l = 5, 6, 7, 8 . (9)

where

M1 = −2m , N1 = 0 , P1 = −m , Q1 = m ;

M2 = 0 , N2 = 2m , P2 = −m , Q2 = m ;

M3 = −m , N3 = m , P3 = −2m , Q3 = 0 ;

M4 = −m , N4 = m , P4 = 0 , Q4 = 2m ;

M5 = 0 , N5 = 2m , P5 = −2m , Q5 = 0 ;

M6 = −2m , N6 = 0 , P6 = 0 , Q6 = 2m ;

M7 = −2m , N7 = 0 , P7 = −2m , Q7 = 0 ;

M8 = 0 , N8 = 2m , P8 = 0 , Q8 = 2m .

Thus,

s(x,y) =

8∑
l=1

sl(x,y)

4

[
n∑
k=0

Csk +
n∑
k=1

2−v/2Csk + Cs0

] , (10)

where Csk is the mask coefficient (see (11) and (12)). For a digital rgb colour
image the algorithm is similar to that for a grey image, but the fractional
differential is applied individually to each of the r, g and b components.

When 0 < v < 1 we implement the fractional mask on the eight symmetric
directions using what we call the fcd-1 operator, which has the same structure
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as yifeipu-1 but with different coefficients. The mask coefficients of the
fcd-1 operator are

Csk = −
1

2 cos(πv/2)hv
ωk for k = 0, 1, 2, . . . ,n , (11)

which ensures that the fractional differential operator fcd-1 produces a
sparse matrix of dimension n+1 . Moreover, all the coefficients depend on the
fractional differential order v. It can be proven that the sum of the coefficients
is nonzero, which is a remarkable difference between the fractional differential
mask and the integral differential mask.

Similarly, when 1 < v < 2 , we define the fractional mask fcd-2 with the
coefficients

Cs0 =
1

2 cos(πv/2)hv
(v− 1)Γ(1− v/2)

Γ(1+ v/2)Γ(2− v)
, (12)

Csk =
1

2 cos(πv/2)hv
(−1)kv(v− 1)Γ(v/2)Γ(1− v/2)

Γ(v/2− k+ 1)Γ(v/2+ k+ 1)Γ(2− v)
,

for k = 1, 2, . . . ,n .

3 Experiments and analysis

In this section, we apply our algorithms to image enhancement of grey and
colour images. We also compare our methods with yifeipu-1 to show that
they have better performance in terms of precision and give an improved
visual effect for texture enhancement. We adopt the fractional derivative with
index 0 < v < 1 to enhance the texture details, and use the index 1 < v < 2
to enhance the edge and texture details for digital image processing. For the
simulations performed here, all algorithms are written and executed using
Matlab. For example, Algorithm 1 is for a grey image.
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Algorithm 1: Algorithm for grey image
Input: Read original grey image and add Gaussian noise with mean 0

and variance 0.01.
Output: s(x,y)

1 Choose m = 2 , n = 4 and mask 5× 5 ;
2 Compute the mask coefficients Csk using either equation (11)
(0 < v < 1) or (12) (1 < v < 2) ;

3 Compute the dimension Nx ×Ny of the image matrix;
4 for x = 2 : Nx − 1 do
5 for y = 2 : Ny − 1 do
6 for l = 1 : 8 do
7 Compute sl(x,y) using equations (8) and (9);
8 end
9 Compute s(x,y) using equation (10);

10 end
11 end
12 Display adjusted image s(x,y) .

In Figure 3 we compare our method fcd-1 with yifeipu-1 and the traditional
integral differential methods involving the Sobel operator and Laplacian oper-
ator on the Lena image [2] with Gaussian noise with mean 0 and variance 0.01.
Figure 3 shows that integral differential methods cannot be used for texture
enhancement because they enhance high frequency marginal information
where the grey level changes greatly but cannot preserve the low frequency
contour information in smooth areas. They also cannot enhance the texture
details in those areas where grey levels have changed little. We also see that
the image obtained from our fcd-1 method has the best definition and the
best visual effect. The visual effect obtained by fcd-1 is better than that of
yifeipu-1 when using the same fractional order and same mask dimensions.

We define the signal to noise ratio

snr = (Asignal/Anoise)
2 , (13)
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(a) (d)

(b) (e)

(c) (f)

Figure 3: The contrast effects of Gaussian noise image enhancement with
mean 0 and variance 0.01 and its fractional differential using yifeipu-1 and
fcd-1. (a) Original Lena image, (b) grey scale noise image, (c) Sobel operator,
(d) Laplacian operator, (e) 0.5 order yifeipu-1 with mask 3×3 , (f) 0.5 order
fcd-1 with mask 3× 3 .
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Table 1: snr with Gaussian noise with mean 0 and variance 0.01 with v = 0.5
and mask 5× 5 for yifeipu-1 and fcd-1

Operators snr
Sobel 3.5
Laplacian 3.3
yifeipu-1 8.3
fcd-1 10.2

Table 2: snr with Gaussian noise with mean 0 and variance 0.01 for both
fcd-1 and yifeipu-1 with v = 0.5

Mask dimensions yifeipu-1 fcd-1
3× 3 10.7 13.3
5× 5 8.3 10.2
7× 7 7.3 8.8
9× 9 6.8 8.0
11× 11 6.4 7.5

where A is root mean square amplitude. Table 1 exhibits the snr for the
traditional integral differential methods using Sobel and Laplacian operators
on the Lena image, and we choose v = 0.5 and mask 5× 5 for yifeipu-1 and
fcd-1. Table 1 shows that fcd-1 has a higher snr than the yifeipu-1, Sobel
and Laplacian operators, which implies a superior texture enhancement.

For the index v = 0.5 , Table 2 shows a comparison of snr for the Lena image
generated using fcd-1 and yifeipu-1. Table 2 shows again that, with the
same mask dimensions, fcd-1 has the higher snr.

We now present two experiments to test our methods on a human brain image
from a patient, diagnosed with Parkinson’s disease, before surgery from St
Andrew’s War Memorial Hospital, Brisbane, Australia.
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By individually applying the fractional differential to the three elements in
hsi colour space, and then reverting to rgb colour space, one gains a colour
image without distortion. Figure 4 compares the texture details of an original
fractional anisotropy weighted orientation map and its fractional differential
using fcd-1 with a 5× 5 mask. In Figure 4 the background of the original
image is those areas with smooth textures and the most comprehensive texture
details; moreover, the grey levels have little variation. The foreground of the
original image is those areas with high frequency verge, and grey levels have
more variability.

Figure 5 compares texture segmentation performance of an original grey
image and its fractional differential version using fcd-2 with a 5× 5 mask.
Figure 5 demonstrates that the fractional differential with 1 < v < 2 is able
to segment texture, as defined by image contrast. As the order increases, the
tissue sharpening effect is more pronounced.

4 Conclusions

The application of fractional differentials to the analysis and processing of
image signals, in particular those associated with digital images, has recently
attracted considerable attention.

We derive two fractional differential algorithms for grey and colour image
enhancement, fcd-1 and fcd-2, based on the Riesz fractional differential
operator. The experiments show that our algorithms are able to produce better
results than traditional integral differential based algorithms and fractional
methods based on the Grünwald–Letnikov definition. This is the case where
nonlinear enhancement of high frequency edges and texture information does
not change significantly. We conjecture that the use of a symmetric second
order Riesz fractional operator, instead of a one sided first order fractional
Grünwald–Letnikov operator, will provide better texture enhancement of the
image, and this is confirmed in our results. Furthermore, we performed a
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(a) (b)

(c) (d)

Figure 4: Comparison of texture details between an original fractional
anisotropy weighted orientation map and its fractional differential using fcd-1
with a 5 × 5 mask. (a) Original image, (b) 0.3 order fcd-1, (c) 0.5 order
fcd-1, (d) 0.7 order fcd-1.
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(a) (d)

(b) (e)

(c) (f)

Figure 5: Comparison of texture-segmentation performance between an origi-
nal grey image and its fractional differential using fcd-2 with a 5× 5 mask.
(a) Original image, (b) 1.2 order fcd-2, (c) 1.4 order fcd-2, (d) 1.5 order
fcd-2, (e) 1.6 order fcd-2, (f) 1.8 order fcd-2.
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simple sensitivity study to obtain a reasonable trade off between precision
and visual effect. In this work we only report the range of values considered.
In future work we will perform a rigorous evaluation of how the fractional
order affects the performance of our algorithm.
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