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Abstract

Fibronectin is a protein present in blood and the extracellular matrix
which has important roles in cell adhesion and migration, wound healing
and blood clotting. Three models of fibronectin adsorption, on various
substrates of interest to biochemists, are compared. The first model (of
Langmuir) is expressed explicitly as a time dependent function for the
mass of protein adsorbed. The second model is a modification of the
scaled particle theory of Reiss et al. [J. Chem. Phys., 31:369–380, 1959]
and takes into account the probability of a molecule finding a sufficiently
large vacant area on the adsorbing substrate surface. The third model
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extends the second model to the case in which molecules may expand
the radius of their contact with the substrate upon adsorption. We
used datasets obtained from experiments to compare the models. The
Langmuir model is straightforward to fit to a dataset. The remaining
models are fitted using a steepest descent method to minimise least
squares error. We describe initial estimates for parameters for this
procedure and compare the quality of fit of the models.
Subject class: 92E20
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1 Introduction

Fibronectin is a multifunctional extracellular matrix and plasma protein that
plays a major role in cell adhesion and migration, including wound healing,
blood clotting and cell adhesion to biomaterial surfaces. In this article we
model the process of fibronectin adsorption onto artificial materials. We
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consider three substrates: hydroxylapatite (hap), oxidised polystyrene (psox)
and nanostructured silica (Si).

The quantitative theory of adsorption originated in the early 20th century
with Langmuir’s work on gases in three dimensions in which it was postulated
that the adsorption rate is proportional to the amount of free space remaining
on the substrate, less any desorption [6]. The later scaled particle theory (spt)
of Reiss et al. [5, 3] used thermodynamic and geometrical arguments concerned
with randomly and sequentially placing spheres that represent molecules into
a volume with no overlap permitted. The spt is valid for a sparsely populated
volume but Widom [9] asserted that it is not an accurate representation of a
system in equilibrium or near its jamming limit. This idea was used by Schaff
and Talbot [8] in their two dimensional modelling of the interactions between
particles on a surface where the particles were considered to be discs of a
known radius. Van Tassel et al. [7] cited a number of experimental studies
that suggested that proteins may undergo a conformational transition after
adsorption, resulting in an increase in the surface contact area. Van Tassel et
al. [7] and Brusatori and van Tassel [1] extended the approach used by Schaaf
and Talbot [8] to incorporate the idea that particles, once adsorbed onto a
random position, may spread symmetrically to a larger size at a given rate.
The model presented by Brusatori and van Tassel [1] (hereafter referred to as
the bvt model) is expressed as a pair of nonlinear differential equations with
five parameters.

In this article we investigate the application of the bvt model to datasets
obtained using a quartz crystal microbalance. In particular, we consider point
estimates of the model parameters using nonlinear least squares regression.
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2 Models

Langmuir’s model [6] is

dΓ

dt
= kacΓsat

(
1−

Γ

Γsat

)
− kdΓ , (1)

where ka is the mass adsorption rate, c is concentration, Γ is the mass surface
density of adsorbate, Γsat is the maximum surface density of adsorbate and
kd is the desorption rate.

In 1959 Reiss et al. [5] considered spheres inside a fixed volume and formulated
the spt. This was refined by later researchers [9, 8, e.g.] and adapted to a
two dimensional region [8, 1, e.g.]. Adsorbing particles are represented as
discs which settle at random positions on the substrate. Letting the radius
of such a disk be α, an adsorbed particle then cannot have another particle
adsorb beside it whose centre would lie within α units of its circumference.

Brusatori and van Tassel [1] further modified the spt model for the case
in which a particle changes shape upon adsorption. Free (α) particles of
radius ηα, adsorbing at rate ka, once adsorbed may spread symmetrically
and instantaneously only to a larger (β) particle of radius ηβ at a spreading
rate ks. Desorption occurs at rate kd.

The representation of the bvt model in Figure 1 has each particle surrounded
by two dashed concentric circles. The probability of a particle finding any
vacant site for adsorption is denoted by Φα. If it lands between the smaller
and larger dashed circles, then the α particle has insufficient room to spread
and become a β particle and so remains an α particle. If it lands outside all
of the exclusion zones, then it will spread to become a β particle at rate ks.
The probability associated with an adsorbed α particle having enough room
to spread to a β particle is denoted by Ψαβ. The bvt model is expressed
as a pair of equations for the dimensionless densities of the two species of
molecule. We denote the dimensionless densities of α particles and β particles
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Figure 1: bvt exclusion zones. No new particle may land within the first
dashed circumference surrounding each particle. Landing between the two
dashed circumferences will not permit any spreading.

as ρ∗α and ρ∗β, respectively. The bvt model is then

dρ∗α
dt

= kacΦα[t, ρ∗α(t), ρ
∗
β(t)] − ksρ

∗
αΨαβ[t, ρ

∗
α(t), ρ

∗
β(t)] − kdρ

∗
α(t) ,

dρ∗β

dt
= ksρ

∗
αΨαβ[t, ρ

∗
α(t), ρ

∗
β(t)] . (2)

We denote the total dimensionless density by ρ∗, that is ρ∗ = ρ∗α+ ρ∗β . There
is an implied dependence of ρ∗, ρ∗α and ρ∗β on the parameters ηα, ηβ, ka, ks,
kd and c.
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Brusatori and van Tassel [1, Eq. (8–9)] give Φα and Ψαβ as

Φα = (1− τ) exp

[
−2(ρ∗α + ηρ

∗
β)

1− τ
−
ρ∗α + ρ

∗
β + (η− 1)2ρ∗αρ

∗
β

(1− τ)2

]
, (3)

Ψαβ = exp

[
−2(η− 1)(ρ∗α + ηρ

∗
β)

1− τ
−

(η2 − 1)(ρ∗α + ρ
∗
β + (η− 1)2ρ∗αρ

∗
β)

(1− τ)2

]
,

(4)

where τ = ρ∗α+ η2ρ∗β and, for simplicity, η = ηβ/ηα (the ratio of larger radius
to smaller radius). However, these equations contain errors that appear in
the original article and should read

Φα = (1− τ) exp

[
−2(ρ∗α + ηρ

∗
β)

1− τ
−
ρ∗α + ρ

∗
β − (η− 1)2ρ∗αρ

∗
β

(1− τ)2

]
, (5)

Ψαβ = exp

[
−2(η− 1)(ρ∗α + ηρ

∗
β)

1− τ
−

(η2 − 1)(ρ∗α + ρ
∗
β − (η− 1)2ρ∗αρ

∗
β)

(1− τ)2

]
.

(6)

Equations (5)–(6) were used to obtain the bvt model results described in
this article.

We also consider the limiting case of the bvt model in which it is assumed
that just one species (α-type) of molecule is present. In this case we have
Ψαβ = 0 , ks = 0 , ρ∗ = ρ∗α , η = 1 , ρ∗β = 0 and the adsorption model is

dρ∗α
dt

= kacΦα[t, ρ∗α(t)] − kdρ
∗
α(t) , (7)

where

Φα[t, ρ∗α(t)] = (1− ρ∗α) exp
[
−3ρ∗α + 2ρ

∗
α
2

(1− ρ∗α)
2)

]
.

This model is related to the spt model for fluids consisting of (three dimen-
sional) hard spheres introduced by Reiss et al. [5] and here will be referred to
as the spt model.
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3 Data

Three biomaterial substrates were considered: hydroxylapatite (hap), oxidised
polystyrene (psox) and nanostructured silica (Si). The data considered in
this article consists of three datasets containing pairs (ti,di) , where ti is
the time, in seconds, at which an observation was made, and di = d(ti) is
the corresponding observed mass density of adsorbed fibronectin measured
in ng/cm2 . Temperature was held constant at 37◦C and the duration of the
experiments ranged from 127 to 136 minutes. Data were obtained using a
quartz crystal microbalance with dissipation monitoring (D300, Q-Sense AB,
Sweden) in which 30 g/ml purified ovine fibronectin in Dulbecco’s phosphate
buffered saline pH 7.4 (dpbs) was allowed to flow over the substrate material,
resulting in adsorption onto the substrate.

4 Identification of parameters

In order to fit (2) to the experimental data we first related the dimensionless
densities of the model to experimentally observed (mass) densities. We denote
by nα and nβ the numbers of α and β molecules, respectively, of adsorbate
per cm2, and by aα the surface area of substrate occupied by an α particle.
The total substrate areas covered by α and β particles at time t are then
aαnα(t) and η2aαnβ(t) . We denote by nα,sat and nβ,sat the numbers of
molecules per cm2 at saturation and note that aα(nα,sat + η

2nβ,sat) is the
total area of adsorbed α and β particles at saturation. Defining Nη,sat =
nα,sat + η

2nβ,sat , it follows that the fractions of saturation area (that is, the
area of substrate actually covered at saturation) covered by α and β particles
at time t are ρ∗α and η2ρ∗β , respectively, where

ρ∗α = nα(t)/Nη,sat , ρ∗β = nβ(t)/Nη,sat . (8)
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The corresponding mass densities, in ng/cm2, of α and β species at t, denoted
by ρα and ρβ, respectively, are

ρα(t) = mNη,satρ
∗
α(t) , ρβ(t) = mNη,satρ

∗
β(t) . (9)

Substituting expressions for ρ∗α and ρ∗β derived from (8) into (2) yields

n ′α(t) = ckaNη,satΦα[t ,nα(t)/Nη,sat ,nβ(t)/Nη,sat]

− ksnα(t)Ψαβ[t ,nα(t)/Nη,sat ,nβ(t)/Nη,sat] − kdnα(t) , (10)
n ′β(t) = ksnα(t)Ψαβ[t ,nα(t)/Nη,sat ,nβ(t)/Nη,sat] . (11)

Given N observations of d(ti), we compute from (8)–(11) corresponding mass
densities ρ(ti) of fibronectin, once the values of the parameters in those
equations are identified. During experimentation the fibronectin solution was
replaced by dpbs once adsorption was complete and allowed to flow over
the plate with the adsorbed mass. There was no significant loss of adsorbed
fibronectin for any substrate and thus we assume that the desorption rate
kd = 0 .

The parameter identification problem was formulated as a least squares
optimisation problem. In particular, given that the concentration c is known
for each dataset and defining nsat = nα,sat + nβ,sat , we seek the parameter
vector θ = (ks,η,nβ,sat,nsat,ka) which minimises the sum of squared errors

E(θ) =

N∑
i=1

[d(ti) − ρ(ti;θ)]
2 (12)

subject to all entries of θ being nonnegative.

The mass m of a fibronectin molecule is known (approximately 4.4× 105 Dal-
tons) a priori, as is the concentration c used in a particular experiment
(c = 30µg/ml was used in all experiments relevant to this article). Erikson
and Carrell [4] reported that the molecule adopts a variety of conformations,
ranging from a long thin flexible strand between 110 and 160 nm in length, to
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a compact helix resembling a globular protein with a Stokes radius of 8 nm.
The latter form is evident when the molecule adsorbs onto a suitable sub-
strate [2, Fig. 3, e.g.]. In this article, the value of rα used in the spt and bvt
models was 8.0 nm. The remaining model parameters are unknown.

The Langmuir model has an explicit solution whose form is well known, and
so standard regression techniques are used to estimate the parameters of this
model. However, explicit solutions are not available for the modified spt
and bvt models. Instead, a numerical solution of the governing equations
was obtained using a set of initial parameter estimates, and was then used
to estimate ρ(t) in (12). The steepest descent method was then applied
iteratively to E to obtain parameter estimates that minimise E. For some
datasets a numerical implementation of the Fletcher–Reeve method was also
used, yielding similar results. The results reported in this article were all
obtained by steepest descent.

The spt model has two unknown parameters: ka and nsat. Given data
showing evidence of saturation, the value of nsat is initially approximated
by ρ(tN)/m . In practice this estimate requires ad hoc modification when
the data suggests that saturation has not occurred. From (7) and (9), with
ρ(0) = 0 , the relation mNη,satkac = ρ ′(0) means that ka is estimated by
approximating the initial slope of the data.

The bvt model requires the estimation of an additional three unknown
parameters: ks, η and nβ,sat . We begin by nominating a feasible range for
each of the parameters. Clearly we require 0 6 nβ,sat 6 nsat , 0 6 ks and
0 6 η . Upper bounds on feasible ks and η are less obvious. In practice, small
values of ks give rise to saturation by α particles while large values give rise
to saturation by β particles. To investigate reasonable search bounds for
parameters we conducted multiple trial parameter identification runs using
initial estimates drawn from a grid in R2 (for the spt model) or R5 (for the
bvt model), as specified in Table 1.

Given the differences in scale that apply to the components of the parameter
vector θ, the optimisation method was applied using the scaled variable
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Table 1: Specifications for grid of initial parameter estimates.

Lower Upper No. grid points
log10 ks −5 1 7

η 1.01 12 12

nsat 1.0× 1012 4.0× 1012 5

nβ,sat 1.0× 109 nsat 5

ka ka,0/2 ka,0 × 2 3

θ̂ = θi/(10θi,max) , where θi,max is the relevant upper bound given in Table 1
during each trial identification run. Also, since for the spt and bvt models
the optimisation problem (12) is defined implicitly in terms of the solution
of the model equations, at some iteration j of the optimisation algorithm we
estimated ∇E numerically from θ̂j to identify the new search direction. A
linear search was then conducted in this direction with an initial step size
of 0.01, applying Mathematica’s inbuilt function NDSolve to (2) at each step
to compute ρα and ρβ numerically for each new parameter vector θ̂ until an
improving point in this direction was found, yielding the next iterate of the
parameter vector θ̂j+1 .

5 Results

Table 2 details the overall optimal parameter estimates obtained for each
dataset and each model. It also gives the empirical relative standard deviations
σrel = σ(θi)/µ(θi) of the distributions of individual parameter estimates for
the spt and bvt models obtained from each grid point during the optimisation
procedure of Section 4.

Figure 2 shows, for the Si dataset, the best fits obtained for each of the three
models and the corresponding residual plots. Corresponding plots for the
hap and psox datasets exhibit similar qualitative characteristics. Clearly
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Table 2: Overall optimal parameter estimates θi for bvt and spt models.

Dataset θi bvt spt Langmuir
Est. θi σrel Est. θi σrel Est. θi

hap ks 5.3× 10−3 2.5
η 3.0 0.70

nβ,sat 1.1× 1012 1.3
nsat 1.1× 1012 0.41 2.0× 1012 6.2× 10−3 9.5× 1011
ka 4.8× 10−9 0.64 3.8× 10−8 3.5× 10−2 4.5× 10−8

psox ks 1.0 2.5
η 0.31 0.67

nβ,sat 3.5× 1012 1.1
nsat 4.1× 1012 0.40 4.0× 1012 3.8× 10−3 2.0× 1012
ka 3.0× 10−7 0.66 4.1× 10−8 9.2× 10−3 4.0× 10−8

Si ks 1.5 2.7
η 9.2 0.65

nβ,sat 1.6× 1012 0.98
nsat 4.0× 1012 0.39 3.5× 1012 2.7× 10−3 1.6× 1012
ka 4.7× 10−10 0.60 2.4× 10−8 1.4× 10−2 3.1× 10−8

there is some autocorrelation in each set of residuals and so it is inappropriate
to use the coefficient of determination in its usual form as a measure of the
quality of fit of the models. However, the residual plots do suggest that the
modelling errors are characterised by two components:

• a smooth component s(t) that accounts for the autocorrelation;

• a stochastic component that is not autocorrelated.

Autocorrelation in residuals of deterministic nonlinear models of complex
phenomena often indicates the degree to which the model fails to capture the
complexity of the phenomenon. To investigate this we model the data by

di = d(ti) = ρ(ti;θ) + s(ti;θ) + εi for i = 1, . . . ,N ,
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Figure 2: Top: Fitted models for the Si dataset. The data (di) are plotted
in black, with ρ(t) in red, green and blue respectively for the bvt, spt and
Langmuir models. Bottom: Residual plots for the Si dataset. The residuals
s(ti) + εi are plotted in red, green and blue respectively for the bvt, spt and
Langmuir models. The function s for each model is plotted in black.
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where s ∈ C1[0,∞) . The function s was estimated in each case by fitting
a trigonometric polynomial through the residuals (see Figure 2). The func-
tion ρ+ s then represents an estimate of the total deterministic component
of the data. The Anderson–Darling test was then applied to the remaining
stochastic components εi to test the normality of their distribution. For all
datasets considered, the largest magnitude residuals occur in the early phase
of observations. Values of εi in this early phase were also often least well
described by an assumption of normality. Initial data points were deleted
from the Anderson–Darling test until the εi corresponding to the remaining
data points were iid-normally (i.e. independently and identically normally)
distributed at the p = 0.05 level. The quality of fit of a given model was then
summarised by the tuple (S,D,µ,σ) , where S = ‖s‖2/‖ρ+ s‖2 is a measure
of the relative amount of the deterministic component not captured by the
function ρ, D is the fraction of data points deleted from the Anderson–Darling
test, and µ and σ are the mean and standard deviation of the remaining
iid-normally distributed εi, respectively.

Table 3 details these measures for each dataset and each model. In all cases,
the bvt model gives the best fit, followed by the spt and Langmuir models,
the latter providing the poorest fit for two of the three substrates. These
observations suggest that the bvt model may in general be preferable as a
predictive tool to the other models. However, the relative standard deviations
in Table 2 indicate that, although the bvt model better accounts for the
data in quantitative terms, its parameter estimates have much less precision
than those of the spt model. The parameters ks and nβ,sat which govern the
transformation of α particles to β particles are particularly poorly specified.
This lack of precision casts doubt on the appropriateness of the bvt model
to explain the data.

The residuals, that is s(ti) + εi, obtained from the models exhibit varying de-
grees of autocorrelation, as seen in Figure 2. This tends to be most significant
during the initial phase of adsorption, where the residuals are relatively large.
In the remainder of the process residuals for the bvt and spt models are small
in magnitude relative to the data. For example, deleting the first five minutes
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Table 3: Quality of fit S = ‖s‖2/‖ρ+ s‖2 , D is the fraction of data points
deleted from the Anderson–Darling test, and µε and σε are the mean and
standard deviation of the remaining iid-normally distributed εi.

Dataset bvt spt Langmuir
hap S 8.1× 10−3 2.7× 10−2 2.4× 10−2

D 0. 0.005 0.
µε 7.3× 10−4 7.2× 10−3 6.8× 10−4
σε 1.3 1.3 1.3

psox S 7.2× 10−3 2.2× 10−2 6.9× 10−2
D 0.12 0.51 0.5
µε 1.7× 10−2 −6.4× 10−3 −1.6× 10−2
σε 0.68 0.37 0.38

Si S 1.7× 10−2 2.4× 10−2 4.3× 10−2
D 0. 0. 0.
µε 4.4× 10−4 7.1× 10−5 5.2× 10−4
σε 1.8 1.9 2.0

of data from the Si dataset yields max |(s(ti) + εi)/di| ≈ 0.04 and mean
|(s(ti) + εi)/di| ≈ 0.007 for the bvt model, and max |(s(ti) + εi)/di| ≈ 0.15
and mean |(s(ti)+εi)/di| ≈ 0.02 for the spt model. Corresponding results for
the Langmuir model are consistently larger: for Si, max |(s(ti)+εi)/di| ≈ 0.17
and mean |(s(ti) + εi)/di| ≈ 0.05 .

6 Conclusions and further work

Of the models considered, the bvt model better accounts for the observed
data, although this is not surprising given its larger number of parameters.
However, the lack of precision in the parameter estimates suggests that the
model may be over parametrised. In particular, the existence of multiple
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near-optimal points in the parameter space suggests that the underlying
assumption of the bvt model, that there are two identifiable conformations
(α and β) for adsorbed particles, has limited value in explaining the data.
For this reason we prefer the simpler spt model. The spt model usually
better accounts for the data than the Langmuir model, and the precision of its
parameter estimates gives some confidence that the parameters reflect stable
properties of the system. While the precision of the parameter estimates for
the Langmuir model are also generally good, the model usually has worse
performance than the spt model.

The relatively small magnitude of the bvt and spt residuals after the initial
phase of adsorption indicates that these models are consistent with the data
in this phase. However, further work on the structure of the model is needed
to account for the larger autocorrelated residuals observed in the initial phase
of adsorption.
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