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An adaptive two-level method for
hypersingular integral equations in R3
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Abstract

In this paper an a posteriori error estimate for hypersingular inte-
gral equations is derived by using hierarchical basis techniques. Based
on the properties of a two-level additive Schwarz method easily com-
putable local error indicators are obtained. An algorithm for adaptive
error control which allows anisotropic refinements of the boundary
elements is formulated and numerical results are included.
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1 A stable two-level subspace decomposition

In recent years adaptive hierarchical basis methods in the finite element
method (fem) [1, 2, 4] have become increasingly popular. This approach
has meanwhile been also applied to the boundary element method (bem)
for weakly singular integral equations [8] and to the fem/bem coupling [7].
Here we extend it to hypersingular integral equations on surfaces.

We consider the hypersingular integral equation

Wv(x) := − 1

4π

∂

∂nx

∫
Γ

v(y)
∂

∂ny

1

|x− y| dσy = f(x) , x ∈ Γ (1)

where Γ is an open plane surface and integration has to be understood in the
Hadamard sense. W is a bijective mapping from H̃1/2(Γ) onto H−1/2(Γ) and
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the bilinear form 〈Wu, v〉 for u, v ∈ H̃1/2(Γ) is symmetric and positive definite
(cf. Costabel [3], Stephan [9]). Hence the unique solution vN ∈ SN ⊂ H̃1/2(Γ)
of the Galerkin scheme

〈WvN , χ〉 = 〈f, χ〉 ∀χ ∈ SN (2)

converges quasi-optimally towards the exact solution v ∈ H̃1/2(Γ) of (1). For
standard Sobolev spaces L2(Γ) and H1

0 (Γ) (which is the completion of C∞
0

within H1(Γ)) the space H̃1/2(Γ) is an interpolation space between L2(Γ)
and H1

0 (Γ), and H−1/2(Γ) is the dual space of H̃1/2(Γ). The solution u of (1)
for given f ∈ H−1/2(Γ) is the jump across Γ of the solution of a Neumann
problem for the Laplacian in R3\Γ̄, cf. [9].

In the following we present a two-level method for the h-version of the
Galerkin scheme with bilinear continuous elements. For ease of presentation
we consider Γ = [−1, 1]2.

Let γl (0 ≤ l ≤ L) be a uniform partition of Γ into squares of side length
hl = 2−l and let

Xl = {u ∈ C0(Γ) : u piecewise bilinear w.r.t. γl and u|∂Γ = 0} (0 ≤ l ≤ L)

X0
l = {u ∈ Xl : u = 0 on the nodes of γl−1} (1 ≤ l ≤ L).

Let bl,i (0 ≤ i ≤ nl) be a piecewise bilinear function with value one at
an interior node of γl (not belonging to γl−1) and with zero value in all
other nodes of γl. Let X0

L,i = span{bL,i}. We have the following two-level
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decomposition of the space XL:

XL = XL−1 ⊕X0
L,1 ⊕ · · · ⊕X0

L,nL
(3)

Let

PL
(2) = PL−1 +

nL∑
i=1

PL,i (4)

be the two-level additive Schwarz operator belonging to the subspace decom-
position (3) and the bilinear form 〈W ·, ·〉, i.e.

〈WPL−1φ, ψ〉 = 〈Wφ,ψ〉 ∀ψ ∈ XL−1, φ ∈ XL,

〈WPL,iφ, ψ〉 = 〈Wφ,ψ〉 ∀ψ ∈ X0
L,i, φ ∈ XL.

Then there holds

Theorem 1 There exist constants c1, c2 > 0, independent of L, such that

c1〈Wu, u〉 ≤ 〈WPL
(2)u, u〉 ≤ c2〈Wu, u〉 ∀u ∈ XL . (5)

The proof of Theorem 1 is based on the following lemmas where always
u ∈ XL arbitrary with

u = uL−1 +

nL∑
i=1

uL,i

where uL−1 ∈ XL−1 and uL,i ∈ X0
L,i. Let IL−1u ∈ XL−1 be the bilinear

interpolant of u at the nodes of γL−1.
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Lemma 2 [6, Lemma 2.5, Lemma 3.10] There exists a constant c, inde-
pendent of L and u, such that

‖u− IL−1u‖L2(Γ) ≤ chL‖u‖H1(Γ). (6)

Furthermore for any s ∈ [0, 1] there exists a constant c = c(s) > 0 such that

‖IL−1u‖H̃s(Γ) ≤ c‖u‖H̃s(Γ) for any u ∈ XL. (7)

Lemma 3 [6, Lemma 3.12] Let ΓL
i ∈ γL be a square with vertices xk

(1 ≤ k ≤ 4). Let v, w be bilinear functions on ΓL
i with v(x1) = w(x1) and

w(x2) = w(x3) = w(x4) = 0 . Then there holds

‖w‖L2(ΓL
i ) ≤

4

3
‖v‖L2(ΓL

i ) .

Lemma 4 [5] Let {Γi, i = 1, . . . , N} be a finite covering of Γ with rectan-
gles Γi and covering constant σ ∈ N, i.e. we can colour {Γi, i = 1, . . . , N}
by at most σ different colours such that subdomains with same colour are
disjoint. Let φ =

∑N
i=1 φi ∈ H̃s(Γ) for s ∈ R with φi ∈ H̃s(Γi). Then there

holds

‖φ‖2
H̃s(Γ)

≤ σ

N∑
i=1

‖φi‖2
H̃s(Γi)

.
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Proof: (of Theorem 1) We show that there exist constants c1, c2 > 0 such
that

1

c2
‖u‖2

H̃1/2(Γ)
≤ ‖uL−1‖2

H̃1/2(Γ)
+

nL∑
i=1

‖uL,i‖2
H̃1/2(Γ)

≤ 1

c1
‖u‖2

H̃1/2(Γ)
. (8)

The left inequality follows directly from Lemma 4 with c2 = 9 since to any
x ∈ Γ there belong at most 8 different bL,i’s with x ∈ suppbL,i (1 ≤ i ≤ nL)
and since

‖uL,i‖H̃1/2(Γ) = ‖uL,i‖H̃1/2(suppbL,i)
.

It remains to show the right inequality in (8). Since uL−1 = IL−1u Lemma 2
implies

‖uL−1‖H̃1/2(Γ) ≤ c‖u‖H̃1/2(Γ) . (9)

Let {xi}nL
i=1 denote the set of nodes in γL which do not belong to γL−1. We

decompose the index set {1, 2, . . . , nL} = M1 ∪M2 ∪M3 into 3 disjoint sets
Mk such that two indices i, j ∈ {1, 2, . . . , nL} belong to the same set Mk if
|xi − xj | is an integer multiple of 2hL. The sets Mk are uniquely determined
(up to permutation) (cf. Fig. 1). For k ∈ {1, 2, 3} the nodes {xi}i∈Mk

are just
the nodes of the coarse grid γL−1 shifted by hL in the x1- and/or x2-direction.
There holds for k ∈ {1, 2, 3}

meas(supp bL,i ∩ supp bL,j) = 0 ∀i, j ∈Mk , i 6= j
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Figure 1: Decomposition of the nodes γL into disjoint subsets: Number
k ∈ {1, 2, 3} of the node x means x ∈Mk. The nodes of the coarse mesh γL−1

are marked with •.
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with the Lebesgue-measure meas(·). Hence

∑
i∈Mk

‖uL,i‖2
0 =

∥∥ ∑
i∈Mk

uL,i

∥∥2

0
≤ 16

9
‖ũ‖2

0 (10)

where ũ = u− uL−1 and ‖ · ‖s = ‖ · ‖H̃s(Γ), s ∈ IR.
Here the last inequality follows from Lemma 3 since w =

∑
i∈Mk

uL,i and ũ
coincide at one node of each element in γL and w vanishes in all the other
nodes. With the standard inverse inequality for finite elements and (10) and
(6) we have

nL∑
i=1

‖uL,i‖2
1/2 ≤ ch−1

L

∑nL

i=1 ‖uL,i‖2
0 = ch−1

L

3∑
k=1

∑
i∈Mk

‖uL,i‖2
0

≤ c′h−1
L ‖ũ‖2

0 ≤ c′h−1
L ‖u− IL−1u‖2

0

≤ chL‖u‖2
1 ≤ c ‖u‖2

1/2 .

Together with (9) this implies the right inequality in (8). Thus the proof is
complete due to the equivalence of the norms ‖u‖1/2 and 〈Wu, u〉1/2. ♠

2 An a posteriori error estimate

Next we need the saturation assumption: (Ah) There exist constants k0 ∈ N
and 0 < ρ < 1 such that

‖v − vk+1‖1/2 ≤ ρ‖v − vk‖1/2 ∀k ≥ k0
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where vk+1 denotes the Galerkin solution on the level k + 1 and v the exact
solution of (1).

Theorem 5 Suppose (Ah) holds. Then there exist constants c1, c2 > 0 such
that there holds for k ≥ k0

c1

nL∑
j=1

η2
L,j ≤ ‖v − vL−1‖2

1/2 = c2

nL∑
j=1

η2
L,j (11)

with

ηL,j =
|〈f −WvL−1, bL,j〉|
〈WbL−1, bL,j〉1/2

(j = 1, 2, . . . , nL) . (12)

Proof: The saturation assumption (Ah) yields the equivalence of norms

‖vL − vL−1‖1/2 ∼ ‖v − vL−1‖1/2 .

Due to Theorem 1 we have

c1‖vL − vL−1‖2
1/2 ≤ ‖PL−1(vL − vL−1)‖2

1/2 +

nL∑
i=1

‖PL,i(vL − vL−1)‖2
1/2

≤ c2‖vL − vL−1‖2
1/2 .

Firstly, we observe that since vL−1 and vL satisfy the Galerkin equation there
holds for any w ∈ XL−1

〈WPL−1vL, w〉 = 〈WvL, w〉 = 〈f, w〉 = 〈WvL−1, w〉 = 〈WPL−1vL−1, w〉 .
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Hence

‖PL−1(vL − vL−1)‖2
1/2 = 0.

The error indicator ηL,j in (12) is obtained by solving a linear problem in
the space X0

L,j . The function vL,j = PL,j(vL − vL−1) ∈ X0
L,j solves for any

v ∈ X0
L,j

〈WvL,j, v〉 = 〈f −WvL−1, v〉 (13)

Hence firstly one solves (13) for 1 ≤ j ≤ nL and then one computes the terms
ηL,j = 〈WvL,j, vL,j〉1/2 . Since X0

L,j = span{bL,j} is a one-dimensional space,
we have vL,j = cbL,j with coefficient

c =
〈f −WvL−1, bL,j〉

〈WbL,j, bL,j〉 .

Hence

ηL,j = |c|〈WbL,j, bL,j〉1/2 .

♠

3 Numerical results

Algorithm 3.1 (Adaptive multilevel algorithm) Let γ0 denote an initial
mesh on Γ and X0 the corresponding space of continuous bilinear functions.
Furthermore let 0 ≤ θ ≤ 1 and δ > 0 be given.



3 Numerical results C1029

1. Compute the Galerkin solution uk ∈ Xk of (2).

2. Compute the error indicators ηk,j, j = 1, . . . , nk with (12).

3. Compute the row error indicators ηR,m and the column error indica-
tors ηC,n as weighted sums of the single error indicators of one row and
one column of the mesh, respectively. The weighting is done by dividing
the quadratic mean of the local error indicators of a row or a column
by the respective number of terms.

4. Compute ηmax := max{ηR,m, ηC,n}. Refine all elements of the mth row
in x1-direction if

ηR,m ≥ θηmax ,

refine all elements of the nth column in x2-direction if

ηC,n ≥ θηmax .

Here refining of the element with index i in xk-direction means halving
the element in xk-direction.

5. Thus obtain the space Xk+1. Check whether ηmax < δ is satisfied.
Otherwise go to 1.

Remark 6 Due to the row and column error indicators the above refinement
strategy secures the continuity of the trial functions. No hanging nodes are
obtained.
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Table 1: Adaptive h -refinement with θ = 0.6 .
L NL EL ηL ηL/EL κ(BhWh) κ(Wh)
1 5 0.559700 0.335091 0.598697 1.24 · 100 1.24 · 100

2 16 0.466277 0.313657 0.672684 4.86 · 100 2.36 · 100

3 48 0.311299 0.201438 0.647088 1.39 · 101 3.74 · 100

4 96 0.214100 0.130477 0.609423 1.65 · 101 6.99 · 100

5 160 0.149149 0.085045 0.570201 1.77 · 101 1.37 · 101

6 240 0.105005 0.057504 0.547632 1.80 · 101 2.86 · 101

7 336 0.074666 0.041280 0.552871 1.83 · 101 6.13 · 101

8 448 0.053782 0.032152 0.597816 1.84 · 101 1.34 · 102

Next we choose the model problem Γ to be the L-shaped surface piece
in the (x1, x2)-plane with vertices (0, 0, 0), (1, 0, 0), (1,−1, 0), (−1,−1, 0),
(−1, 1, 0), (0, 1, 0), and the right hand side f = 1 in (1). In Table 1 the results
are presented for the adaptive refinement strategy. NL denotes the number of
unknowns on level L; EL the relative error in the energy norm; κ(BhWh) and
κ(Wh) the condition numbers of the preconditioned and unpreconditioned
Galerkin matrix of (2), respectively; Bh the preconditioner according to the
additive Schwarz operator in (4); ηL the sum of the error indicators and
ηL/EL the efficiency index of the algorithm. The sequence of corresponding
mesh refinements is given in Figure 2.
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Figure 2: The sequence of refined meshes for θ = 0.6 .
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