
ANZIAM J. 54 (CTAC2012) pp.C102–C118, 2013 C102

Performance assessment of exponential
Rosenbrock methods for large systems of ODE

E. J. Carr1 T. J. Moroney2 I. W. Turner3

(Received 1 November 2012; revised 27 March 2013)

Abstract

This article studies time integration methods for stiff systems of
ordinary differential equations of large dimension. For such problems,
implicit methods generally outperform explicit methods because the
step size is usually less restricted by stability constraints. Recently,
however, a family of explicit methods, called exponential integrators,
have become popular for large stiff problems due to their favourable
stability properties and the rapid convergence of non-preconditioned
Krylov subspace methods for computing matrix-vector products involv-
ing exponential-like functions of the Jacobian matrix. In this article,
we implement the so-called exponential Rosenbrock methods using
Krylov subspaces. Numerical experiments on a challenging real-world
test problem reveal that these methods are a promising preconditioner-
free alternative to well-established approaches based on preconditioned

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6331
gives this article, c© Austral. Mathematical Soc. 2013. Published May 11, 2013, as part
of the Proceedings of the 16th Biennial Computational Techniques and Applications
Conference. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this url for
this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6331


Contents C103

Newton–Krylov implementations of the backward differentiation for-
mulas.
Subject class: 65L04
Keywords: exponential integrators, backward differentiation formulas,
stiff ordinary differential equations, Krylov subspace methods, porous
media

Contents
1 Introduction C103

2 Exponential Rosenbrock methods C107
2.1 General framework . . . . . . . . . . . . . . . . . . . . . . C107
2.2 Embedded methods . . . . . . . . . . . . . . . . . . . . . . C108
2.3 Krylov subspace methods . . . . . . . . . . . . . . . . . . C109

3 Results C111

4 Conclusions C116

References C117

1 Introduction

We study time integration methods for initial value problems involving large
stiff systems of nonlinear ordinary differential equations (odes) in autonomous
form:

u ′(t) = g(u) , u(0) = u0 , 0 < t 6 T , (1)

where u ∈ RN with N large, g : RN → RN is a nonlinear vector-valued
function of u, u ′ is the time derivative of u, and u0 is the known initial
solution vector. Such problems frequently arise from spatial discretisations of



1 Introduction C104

nonlinear time-dependent partial differential equations, where the entries of
the vector u are the discrete solution values and the stiffness of the system
is characterised by the presence of one or more eigenvalues of the Jacobian
matrix J = ∂g/∂u with large negative real parts.

A time integration method applied to (1) produces an approximation to
the continuous solution u(t) taking the form of individual approximations
un ≈ u(tn) at a discrete set of times {tn,n ∈ N} with step sizes τn = tn+1−tn .
Such methods are often classified as being explicit or implicit. In terms of
the computation required per time step, explicit methods are generally more
attractive because they do not require the solution of a linear or nonlinear
system of equations at each time step. However, for stiff problems implicit
methods generally outperform explicit methods. Roughly speaking, the reason
for this is due to the eigenvalue distribution described above. Since implicit
methods have a much larger region of absolute stability1, the step size is less
restricted by stability constraints.

Perhaps the most widely used implicit methods for stiff problems are the
backward differentiation formulas (bdfs). The idea is to evaluate (1) at
t = tn+1 , and then use a qth order backward difference approximation2 to
approximate u ′(tn+1) :

u ′(tn+1) ≈
q∑
i=0

αn,iun+1−i ,

where the coefficients αn,i depend on the order q, the recent step size history
and the current step size τn. The qth order scheme3 takes the form of a

1For a fixed step size τ, the region of absolute stability specifies any constraints on τ
needed to ensure the approximate solution to the linear problem y ′ = λy , where λ ∈ C
with <(λ) < 0 , matches the asymptotic behaviour of the exact solution, that is, y(t)→ 0
as t→∞ . A scheme is said to be A-stable if it is stable for all <(λ) < 0 .

2Such an approximation is derived by differentiating the interpolating polynomial (of
degree at most q) that passes through the q+ 1 points (tn+1−i,un+1−i) , i = 0, . . . ,q .

3For q = 1 the well-known backward Euler method, a first order one-step method, is



1 Introduction C105

system of nonlinear equations,

f(un+1) ≡ un+1 − γng(un+1) + an = 0 , (2)

where an =
∑q

i=1(αn,i/αn,0)un+1−i and γn = τn/αn,0 , which must be solved
at every time step for un+1 .

The computational cost of solving (2) is dominated by the solution of a system
of linear equations at each Newton iteration:

[I− γnJ(un+1,k)] xk = −f(un+1,k) , (3)

where xk = un+1,k+1 − un+1,k and un+1,k denotes the kth Newton iterate.

For large problems, Krylov subspace methods are favoured because they
require only matrix-vector products with the Jacobian matrix. This is attrac-
tive because such products are approximated cheaply using finite difference
approximations [7, §3.2.1, e.g.]. Such methods for solving systems of nonlinear
equations are called Jacobian-free Newton–Krylov methods [8]. The preferred
Krylov method is usually the generalised minimal residual method (gmres),
since it minimises the 2-norm of the residual vector at each iteration. The
catch is that convergence is usually unsatisfactory without some form of
preconditioning. Using right preconditioning, the linear system (3) is solved
in two stages by introducing a preconditioner matrix M:

• solve [I− γnJ(un+1,k)]M
−1x̃k = −f(un+1,k) for x̃k using gmres;

• solve Mxk = x̃k for xk.

The choice of M is highly problem-dependent: a good preconditioner for
one problem is not necessarily a good preconditioner for another [9]. A
standard approach, which works well in many cases, is to choose M equal
to the coefficient matrix of (3) but ‘freeze’ the matrix over multiple time
steps [8]. Note that for this particular choice of M, the approach is not truly

obtained, whereas for q > 1 , the backward differentiation formulas are all higher order
multistep methods as un+1 depends on not only un but also un−1 , . . . ,un+1−q .



1 Introduction C106

Jacobian-free since the Jacobian matrix is formed and stored whenever M is
updated.

Over the past decade, a family of time integration methods known as exponen-
tial integrators have emerged as a serious contender to implicit methods for
large, stiff problems. In the simplest of terms, an exponential integrator for (1)
is any time integration method that involves the exponential of the Jacobian
matrix. The prototype method (in essence, the backward Euler equivalent
for exponential integrators) is known as the exponential Rosenbrock–Euler
method [6]. It is summarised as follows. Given the approximate solution at
t = tn , denoted by un, linearise the nonlinear function g(u) to obtain

u ′(t) = gn + Jn(u− un) ,

where gn = g(un) and Jn = J(un) . Solving this system of linear odes exactly
using the integrating factor:∫ tn+1

tn

d

dt

(
e−tJnu

)
dt =

∫ tn+1

tn

e−tJn (gn − Jnun) dt ,

produces the scheme

un+1 = un + τnϕ1(τnJn)gn , (4)

where
ϕ1(z) =

ez − 1

z
. (5)

Note that (4) is explicit: un+1 is defined explicitly in term of un, so there is
no nonlinear or linear system to solve. Instead, computation of the matrix
function vector product ϕ1(τnJn)gn is required per time step.

The exponential Rosenbrock–Euler method is a second order method. Higher
order methods for (1) have been developed and include the exponential
Rosenbrock methods [6] and the exponential propagation iterative methods [9].
Such methods require multiple matrix function vector products per time



2 Exponential Rosenbrock methods C107

step involving the so-called phi functions, which are defined by (5) and the
recurrence relation:

ϕk(z) =
ϕk−1(z) −ϕk−1(0)

z
, k = 2, 3, . . . .

The attraction of using an exponential integrator is due to two main reasons.
Firstly, they have excellent stability properties—they are usually exact for
linear problems (that is, problems in the form of (1) with g(u) = Au + b ,
where A and b have fixed entries), which means that they are A stable. In
contrast, only the first and second order backward differentiation formulas
possess this property. The second reason is that Krylov subspace methods
for computing matrix function vector products involving ϕk(τnJn) typically
converge rapidly, meaning that the integrators can be implemented efficiently
without preconditioning.

The aim of this article is to compare the performance of higher order exponen-
tial integrators to the backward differentiation formulas. Similar comparisons
for first and second order methods [3] and fixed step size implementations [9]
have featured previously. We focus on the exponential Rosenbrock methods of
Hochbruck, Ostermann and Schweitzer [6]. We briefly discuss their derivation,
present methods of order three and four, and explain the implementation
of the schemes using Krylov subspace methods (see Section 2). Numerical
experiments comparing the performance of each method are carried out in
Section 3.

2 Exponential Rosenbrock methods

2.1 General framework

We write the initial value problem (1) in the form

u ′(t) = gn + Jn(u− un) + d(u) ,



2 Exponential Rosenbrock methods C108

where d(u) = g(u)−gn− Jn(u−un) . Using the integrating factor e−tJn , the
following expression is obtained for the exact solution at t = tn+1 ,

u(tn+1) = un + τnϕ1[τnJ(un)]g(un) +

∫ tn+1

tn

e(tn+1−t)J(un)d[u(t)]dt .

This formula is the starting point for developing higher order one-step ex-
ponential integrators for (1). The basic idea is to approximate the integral
using an appropriate quadrature rule. Since the integrand depends on the
solution u(t), in general, a time integration method is obtained consisting
of s internal stages un,i that approximate the solution at t = tn + ciτn:

un,i = un + ciτnϕ1(ciτnJn)gn + τn

i−1∑
j=1

aij(ciτnJn)dn,j , i = 1, . . . , s ,

un+1 = un + τnϕ1(τnJn)gn + τn

s∑
i=1

bi(τnJn)dn,i , (6)

where dn,i = d(un,i) and the scalars ci are called the nodes of the method.
The quadrature weights bi(z) and coefficients aij(z) are linear combinations
of the functions ϕk(z) and ϕk(ciz) . Conditions on these functions determine
the order of the method [6].

Note that the exponential Rosenbrock–Euler method (4) is an exponential
Rosenbrock method with s = 0 .

2.2 Embedded methods

A critical component of time integration methods for large, stiff problems is
the use of adaptive step size control, whereby the local error is estimated at
every time step and the step size adjusted to satisfy absolute and relative
error tolerances. The idea is to construct a pair of embedded methods to
obtain two approximate solutions: un+1 and an error estimator ûn+1 . The



2 Exponential Rosenbrock methods C109

difference between these solutions is taken as an estimate of the local error at
each time step. To reduce the computation introduced, the error estimator
relies on the same internal stages un,i , i = 1, . . . , s and takes the general form

ûn+1 = un + τnϕ1(τnJn)gn + τn

s∑
i=1

b̂i(τnJn)dn,i .

The following pairs of embedded methods were given by Hochbruck et al. [6].

The exprb32 scheme is a one stage pair of embedded exponential Rosenbrock
methods of orders two and three:

un,1 = un + τnϕ1(τnJn)gn ,
un+1 = un + τnϕ1(τnJn)gn + τnb1(τnJn)dn,1 ,
ûn+1 = un + τnϕ1(τnJn)gn ,

where b1(z) = 2ϕ3(z) . The exprb43 scheme is a two stage pair of embedded
exponential Rosenbrock methods of orders three and four,:

un,1 = un +
1
2
τnϕ1(

1
2
τnJn)gn ,

un,2 = un + τnϕ1(τnJn)gn + τna21(τnJn)dn,1 ,
un+1 = un + τnϕ1(τnJn)gn + τnb1(τnJn)dn,1 + τnb2(τnJn)dn,2 ,

ûn+1 = un + τnϕ1(τnJn)gn + τnb̂1(τnJn)dn,1 + τnb̂2(τnJn)dn,2 ,

where a21 = ϕ1(z) , b1(z) = 16ϕ3(z)− 48ϕ4(z) , b2(z) = −2ϕ3(z)+ 12ϕ4(z) ,
b̂1(z) = 16ϕ3(z) and b̂2(z) = −2ϕ3(z) . In both schemes the higher order
method is used to continue the integration.

2.3 Krylov subspace methods

In general, an s stage exponential Rosenbrock method contains (at most) (s+
1)(s+2)/2 unique products involving a matrix function and a vector. However,



2 Exponential Rosenbrock methods C110

since all products involve the matrix Jn and either of the vectors gn or
dn,k , k = 1, . . . , s , only s + 1 Krylov subspaces are required. For example,
the scheme exprb43 requires seven unique products but only three Krylov
subspaces per time step.

In what follows, we describe the computation of f(τnJn)bk , where

bk =

{
gn , k = 0,
dn,k , k = 1, . . . , s ,

and f(z) is any one of the functions ϕ1(z), bi(z), aij(z) or b̂i(z). Approxima-
tions are extracted from the small dimensional Krylov subspaces Km(Jn,bk) ,
k = 0, . . . , s using s+1 applications of Arnoldi’s method, yielding the relations

JnV
(k)
m = V(k)

m H(k)
m + β(k)

m v
(k)
m+1e

T
m , k = 0, . . . , s ,

where v1 = bk/‖bk‖2 , the columns of V(k)
m = [v

(k)
1 , v(k)2 , . . . , v(k)m ] ∈ RN×m

form an orthornormal basis for Km(Jn,bk) , H
(k)
m = V

(k)T
m JnV

(k)
m ∈ Rm×m is an

upper Hessenberg matrix and em is the mth canonical basis vector in Rm [1].
Since dn,1 depends on gn and dn,k depends on dn,k−1 for k = 2, . . . , s all
applications of Arnoldi’s method must be performed serially.

The Krylov approximation is then [2, 5]

f(τnJn)bk ≈ ‖bk‖2V(k)
m f(H(k)

m )e1 , k = 0, . . . , s , (7)

which reduces the evaluation of f to a small m×m matrix that is computed
using standard approaches such as Padé approximation [5]. Beginning at
m = 1 the subspace is expanded by one additional vector at each iteration
producing an updated Arnoldi relation and approximation (7). Termination
of the iterative procedure is based on the generalized residual vector [2, 5].



3 Results C111

3 Results

Our interest in initial value problems in the form of (1) lies in the field of
simulating transport in porous media and therefore we use the well-known two
dimensional test problem, Richards’ equation. We solve the two-dimensional
Richards’ equation,

∂θ(h)

∂t
=
∂

∂x

[
K(h)

∂h

∂x

]
+
∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
,

on Ω = {(x, z) | 0 < x < 5, 0 < z < 3} and 0 < t < 12.5 , subject to the initial
condition and boundary conditions:

h = −500 , t = 0 ,

K(h)
∂h

∂x
= 0 , x = 0 , x = 5 ,

K(h)
∂h

∂z
+ K(h) = 0 , z = 0 ,

K(h)
∂h

∂z
+ K(h) = 0 , z = 3 , 0 < x < 2 , 3 < x < 5 ,

K(h)

(
∂h

∂x
+ 1

)
= 0.05 , z = 3 , 2 < x < 3 .

The moisture content θ, hydraulic conductivity K and effective satura-
tion Se are all defined in terms of the pressure head h < 0 as given by
the van Genuchten relations [1]:

θ(h) = θres +
(
θsat − θres

)
Se(h) ,

K(h) = Ksat

√
Se(h)

{
1−

[
1− Se(h)

1/m
]m}2

, (8)

Se(h) = [1+ (−αh)n]
−m ,

where m = 1− 1/n .



3 Results C112

The specific test problem concerns the flow of water into a very dry rectangular
region divided into nine alternating blocks of two heterogeneous soils: sand
and clay (see Figure 1 and Table 3). All boundaries are zero flux apart from
a 1m strip in the centre of the top block of sand, where a constant influx of
water at 0.05m per day is applied.

A spatial discretisation was performed using the finite volume method on
a rectangular grid consisting of 129 nodes in both the x and z directions.
Horizontal symmetry of the problem is not exploited. This produces an initial
value problem in the form of (1) with N = 1292 = 16641 , where the vector u
contains the unknown values of the pressure head h at each of the nodes.
Carr, Moroney and Turner [1] give full details.

The schemes exprb32 and exprb43 were implemented in Matlab with Krylov
subspace methods. In addition, we implemented the exponential Rosenbrock–
Euler method using the step size control strategy featured in our previous
article [1]. We refer to this method as exprem22 henceforth. Performance
comparisons were made with the Matlab interface to the cvode module of the
suite of nonlinear/differential-algebraic solvers (Sundialstb v2.5.0). For stiff
problems, cvode employs a variable order implementation of the backward
differentiation formulas, meaning that the order is adjusted throughout the
time integration with the goal of maximising the step size. Implementations
with upper bounds of two, three and four on the order are denoted by bdf2,
bdf3 and bdf4. cvode provides several choices for the solution of the linear
systems at each Newton iteration. In this work, we used the in-built gmres
solver with the ‘freezing’ preconditioning strategy outlined in Section 1. The
specific solver options are given in Table 1. Full details are provided in the
Sundials documentation [4].

All methods tested were implemented in a Jacobian-free framework, that is,
Jacobian matrix-vector products were approximated using

J(u)v ≈ [g(u+ εv) − g(u)]/ε , (9)

where ε is a suitably-defined perturbation [1, 4]. For cvode, when updating



3 Results C113

Table 1: Solver options used in cvode.
Option Value
LinearSolver gmres
PrecType Right
PrecModule BandPre
LowerBwidth 29
UpperBwidth 129

Figure 1: Numerical solution of the test problem. Contour plot of the
saturation field (θ/θsat). Animation over varying time viewable in at least
Adobe Reader version 9.

the preconditioner, the full Jacobian was computed numerically taking ad-
vantage of its banded structure by using (9) with appropriate choices for the
vector v [7, §2.3].

A benchmark solution was obtained using cvode (with maximum order five)
with very small absolute and relative error tolerances. For each of the six
methods tested, simulations were performed in Matlab 2012b with absolute



3 Results C114

Table 2: Hydraulic properties of sand and clay used in the van Genucten
relations in equation (8).

Material θres θsat Ksat [ms−1] α [m−1] n

Clay 0.106 0.469 1.52× 10−6 1.04 1.40
Sand 0.029 0.366 6.26× 10−5 2.80 2.23

and relative error tolerances (tol) equal to 10−4, 10−5, . . . , 10−8, respectively.
Table 3 lists the relative error of the solution at t = 12.5 days, the total
number of function calls to g(u) (for bdf2, bdf3 and bdf4 this includes the
function evaluations required to form the Jacobian matrix when updating
the preconditioner), the total number of accepted time steps and the cpu
time for each simulation. Although we understand that cpu times strongly
depend on the available computer architecture, we feel that the comparisons
are of interest.

Comparing the second order methods, we conclude that exprem22 comprehen-
sively outperforms bdf2 because it requires fewer function calls, fewer time
steps and less cpu time to compute a solution of equivalent accuracy. For
the third order methods, exprem32 and bdf3, we observe that both schemes
are comparable in terms of computation required to obtain a solution of
desired accuracy. Finally, the fourth order backward differentiation formula,
bdf4, performs better than the fourth order exponential Rosenbrock method,
exprb43.

An important observation is the increase in computation per step when
increasing the order of the exponential Rosenbrock methods. For a comparable
number of time steps, the number of function calls increases as evidenced
by the simulations: exprem22 (2437 steps, 18335 calls), exprb32 (2783 steps,
25217 calls) and exprb43 (2692 steps, 36200 calls). Such a trend is not
observable for the the backward differentiation formulas: bdf2 (2860 steps,
20183 calls), bdf3 (2926 steps, 20603 calls), bdf4 (2386 steps, 16191 calls).
The main reason for this is that the higher order exponential Rosenbrock



3 Results C115

Table 3: Simulation statistics for the test problem. For each of the six
methods, approximate solutions are obtained using absolute and relative error
tolerances (tol). Statistics listed are the relative error of the approximate
solution at t = 12.5 days, the total number of function calls to g(u) (for
bdf2, bdf3 and bdf4 this includes the function evaluations required to form
the Jacobian matrix when updating the preconditioner), the total number of
accepted time steps and the cpu time.

tol exprem22 bdf2 exprb32 bdf3 exprb43 bdf4
Relative error
10−4 8.7e−3 1.4e−3 1.6e−2 3.3e−4 5.2e−2 2.1e−5
10−5 4.1e−4 3.2e−4 3.4e−4 6.0e−5 5.2e−3 1.5e−6
10−6 7.4e−6 5.8e−5 3.9e−6 8.8e−6 1.6e−4 4.2e−7
10−7 3.4e−6 1.4e−5 3.5e−6 1.9e−6 6.7e−7 1.0e−7
10−8 8.7e−7 3.2e−6 8.0e−7 3.3e−7 2.8e−7 2.9e−8
Total number of function calls
10−4 11688 20183 15408 12267 20945 11134

10−5 18335 40286 25217 20603 25721 16191

10−6 31062 85000 45404 36026 36200 24292

10−7 56778 177813 89813 62152 55758 38410

10−8 112346 382927 186361 107069 92538 59556

Total number of accepted time steps
10−4 1234 2860 1360 1707 1014 1561

10−5 2437 6039 2783 2926 1598 2386

10−6 5156 13365 5906 5484 2692 3660

10−7 10660 28022 12652 9717 4664 5960

10−8 22233 60273 27221 16826 8214 9329

cpu time [mins]
10−4 2.6 8.2 3.4 5.4 5.5 4.6
10−5 4.0 15.3 5.3 8.4 6.2 6.5
10−6 6.6 31.3 9.5 14.2 8.2 9.7
10−7 11.9 64.6 18.5 24.2 12.7 14.2
10−8 23.6 142.0 38.4 41.2 21.0 22.1



4 Conclusions C116

methods require computation of additional matrix function vector products
per time step, whereas, for the backward differentiation formulas, the solution
of one nonlinear system is required per step, regardless of the order used.

Another key finding is the relatively low accuracy of exprb32 and exprb43
compared with bdf3 and bdf4 for a given value of the tolerance (tol). This
indicates that the exponential Rosenbrock methods are under estimating the
local error at each time step. The reason for this is almost certainly that the
embedded methods, used to estimate the local error, are of lower order.

Finally, interestingly, the computational cost required to compute a solu-
tion with relative error less than 10−5. Surprisingly, exprem22 (6.6 mins,
31062 calls) places second in this category, just behind bdf4 (6.5 mins,
16191 calls) and well in front of exprb32 (9.5 mins, 45404 calls), exprb43
(12.7 mins, 55758 calls), bdf3 (14.2 mins, 36026 calls) and bdf2 (142 mins,
382927 calls).

4 Conclusions

Exponential Rosenbrock methods are competitive with backward differentia-
tion formulas when applied to stiff problems arising from spatial discretisations
of time-dependent partial differential equations. For very large problems,
these methods are particularly attractive because they do not require pre-
conditioning. Our numerical experiments indicate that, although the third
and fourth order exponential Rosenbrock methods are competitive with the
third and fourth order bdfs, they suffer from an increase in the number of
function evaluations due to the multiple matrix function vector products (and
therefore multiple Krylov subspaces) required per time step. A key point is
that all of these subspaces involve the same Jacobian matrix. Future work
will therefore focus on reducing the function evaluation count by recycling
some of the spectral information from one subspace to the next.



References C117

Acknowledgements This work was supported by the Australian Research
Council Discovery Project grant DP120103770. We thank the two anonymous
reviewers for their detailed analysis and suggestions which improved the
quality of the final version of this article.

References

[1] E. J. Carr, T. J. Moroney and I. W. Turner. Efficient simulation of
unsaturated flow using exponential time integration. Appl. Math.
Comput., 217(14): 6587–6596, 2011. doi:10.1016/j.amc.2011.01.041
C110, C111, C112

[2] E. J. Carr, I. W. Turner and M. Ilic. Krylov subspace approximations
for the exponential Euler method: error estimates and the harmonic
Ritz approximant. ANZIAM Journal, 52: C612–C627, 2011.
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/
view/3938 C110

[3] E. J. Carr, I. W. Turner and P. Perré. A variable step size Jacobian-free
exponential integrator for simulating transport in heterogeneous porous
media: application to wood drying. J. Comput. Phys., 233: 66-82, 2013.
doi:10.1016/j.jcp.2012.07.024 C107

[4] Sundials user documentation. https://computation.llnl.gov/casc/
sundials/documentation/documentation.html C112

[5] M. Hochbruck, C. Lubich and H. Selhofer. Exponential integrators for
large systems of differential equations. SIAM J. Sci. Comput., 19(5):
1552–1574, 1998. doi:10.1137/S1064827595295337 C110

[6] M. Hochbruck, A. Ostermann and J. Schweitzer. Exponential
Rosenbrock-type methods. SIAM J. Numer. Anal., 47(1): 786–803, 2009.
doi:10.1137/080717717 C106, C107, C108, C109

http://dx.doi.org/10.1016/j.amc.2011.01.041
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3938
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3938
http://dx.doi.org/10.1016/j.jcp.2012.07.024
https://computation.llnl.gov/casc/sundials/documentation/documentation.html
https://computation.llnl.gov/casc/sundials/documentation/documentation.html
http://dx.doi.org/10.1137/S1064827595295337
http://dx.doi.org/10.1137/080717717


References C118

[7] C. T. Kelley. Solving nonlinear equations with Newton’s method. SIAM,
USA, 2003. C105, C113

[8] D. A. Knoll and D. E. Keyes. Jacobian-free Newton–Krylov methods: a
survey of approaches and applications. J. Comput. Phys., 193(2):
357–397, 2004. doi:10.1016/j.jcp.2003.08.010 C105

[9] M. Tokman. Efficient integration of large stiff systems of ODEs with
exponential propagation iteration (EPI) methods. J. Comput. Phys.,
213: 748–776, 2006. doi:10.1016/j.jcp.2005.08.032 C105, C106, C107

Author addresses

1. E. J. Carr, Mathematical Sciences School, Queensland University of
Technology, Brisbane, Queensland 4000, Australia.
mailto:elliot.carr@qut.edu.au

2. T. J. Moroney, Mathematical Sciences School, Queensland
University of Technology, Brisbane, Queensland 4000, Australia.
mailto:t.moroney@qut.edu.au

3. I. W. Turner, Mathematical Sciences School, Queensland University
of Technology, Brisbane, Queensland 4000, Australia.
mailto:i.turner@qut.edu.au

http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.1016/j.jcp.2005.08.032
mailto:elliot.carr@qut.edu.au
mailto:t.moroney@qut.edu.au
mailto:i.turner@qut.edu.au

	Introduction
	Exponential Rosenbrock methods
	General framework
	Embedded methods
	Krylov subspace methods

	Results
	Conclusions
	References

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


