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Abstract

Transport processes within heterogeneous media may exhibit non-
classical diffusion or dispersion which is not adequately described by
the classical theory of Brownian motion and Fick’s law. We consider
a space-fractional advection-dispersion equation based on a fractional
Fick’s law. Zhang et al. [Water Resour. Res. 43:W05439, 2007]
considered such an equation with variable coefficients, which they
discretised using the finite difference method proposed by Meerschaert
and Tadjeran [J. Comput. and Appl. Math. 172:65–77, 2004]. For
this method, the presence of variable coefficients necessitates applying
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the product rule before discretising the Riemann–Liouville fractional
derivatives using standard or shifted Grünwald formulas, depending
on the fractional order. As an alternative, we propose using a finite
volume method that deals directly with the equation in conservative
form. Fractionally shifted Grünwald formulas are used to discretise
the Riemann–Liouville fractional derivatives at control volume faces,
eliminating the need for product rule expansions. We compare the two
methods for several case studies, highlighting the convenience of the
finite volume approach.
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1 Introduction

Transport processes within complex and nonhomogeneous media may exhibit
non-classical diffusion or dispersion which is not adequately described by
the classical theory of Brownian motion and Fick’s law [1, 2, 3, 12, 13].
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Fractional differential equations, and fractional calculus in general, provide a
means for modelling such anomalous transport by replacing traditional integer
order derivatives with fractional derivatives. The application to anomalous
transport is a significant driving force behind the rapid growth and expansion
of the literature in the field of fractional calculus.

As far as numerical methods for solving fractional differential equations
are concerned, finite difference methods were amongst the first developed.
Meerschaert and Tadjeran [6, 7], and Tadjeran et al. [10] published several key
papers in which they derived finite difference methods for equations involving
Riemann–Liouville fractional derivatives. They showed that for fractional
orders between zero and one, standard Grünwald formulas lead to stable
methods, whereas for fractional orders between one and two, shifted Grünwald
formulas are required for stability.

More recently, finite volume methods, which deal directly with equations in
conservative form, were proposed. A finite volume method for solving the
space-fractional advection-dispersion equation with constant coefficients was
proposed by Zhang et al. [11]. Their method was based on discretising the
integral using the Riemann–Liouville definition of the fractional derivative.

Previously we proposed a finite volume method for the two sided space-
fractional advection-dispersion equation with constant coefficients [5]. Our
method used shifted Grünwald formulas to discretise the fractional derivatives
at control volume faces. We also proved the stability and convergence of the
method.

The finite difference method of Meerschaert and Tadjeran [6] and the finite
volume method of Hejazi et al. [5] both employ Grünwald formulas in their
discretisations. A key difference between the two methods is that the finite
volume method deals directly with the differential equation in conservative
form, eliminating the need for product rule expansions in variable coefficient
problems.

We consider the space-fractional advection-dispersion equation with variable
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coefficients,

∂C(x, t)
∂t

+
∂

∂x
[V(x)C(x, t)] =

∂

∂x

[
K(x)

∂αC(x, t)
∂xα

]
, (1)

on the interval x ∈ [a,b] , subject to homogeneous Dirichlet boundary con-
ditions. The function C(x, t) represents, for example, a concentration, and
V(x) and K(x) are the velocity and the anomalous dispersion coefficients,
respectively. The operator ∂α/∂xα is the left Riemann–Liouville fractional
derivative of order α [9, p.62] and we assume α ∈ (0, 1) .

We derive the finite difference and finite volume discretisations for equation (1)
and compare the numerical solution obtained with the two methods for
several variable coefficient test problems. We demonstrate that the finite
volume method produces solutions that conserve mass, whereas precise mass
conservation is not achieved using the finite difference method.

2 Numerical methods

2.1 Finite difference method

We consider a transport domain [a,b] that is discretised with N+1 uniformly
spaced nodes xi = a+ih for i = 0, . . . ,N , with the spatial step h = (b−a)/N .
To numerically solve the space-fractional advection-dispersion equation using
the finite difference method of Meerschaert and Tadjeran [6], we first expand
the spatial derivative terms in (1) using the product rule. For the advective
term,

∂

∂x
[V(x)C(x, t)] =

∂V(x)

∂x
C(x, t) + V(x)

∂C(x, t)
∂x

, (2)

and for the dispersive term,

∂

∂x

[
K(x)

∂αC(x, t)
∂xα

]
=
∂K(x)

∂x

∂αC(x, t)
∂xα

+ K(x)
∂α+1C(x, t)
∂xα+1

. (3)
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The derivative ∂C/∂x in (2) is approximated using second order central
differences. This implies that a suitably fine mesh be used to ensure mono-
tonicity [8]. We approximate the α and α+ 1 order fractional derivatives
with standard and shifted Grünwald formulas, respectively [6].

Definition 1. Shifted Grünwald formula on [a,b]

∂αC(x, t)
∂xα

≈ 1

hα

[(x−a)/h+p]∑
j=0

(−1)j
(
α

j

)
C[x− (j− p)h, t] , (4)

where p is the shift value.

We define weights

wα0 = 1 and wα,j = (−1)j
α(α− 1) · · · (α− j+ 1)

j!
for j = 1, 2, . . . , (5)

and write (4) more simply as

∂αC(x, t)
∂xα

≈ 1

hα

[(x−a)/h+p]∑
j=0

wαj C[x− (j− p)h, t] . (6)

Equation (6) with p = 0 is the standard Grünwald formula. The shift value
p = 1 is required in the discretisation of the α+ 1 order fractional derivative
(recalling that 0 < α < 1) so that the resulting finite difference method is
numerically stable [6]. Hence we arrive at the discretisations [6]

∂αC(xi, t)
∂xα

≈ 1

hα

i∑
j=0

wαj C(xi−j, t) , (7)

∂α+1C(xi, t)
∂xα+1

≈ 1

hα+1

i+1∑
j=0

wα+1j C(xi−j+1, t) . (8)
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We now define a temporal partition tn = nτ for n = 0, 1, . . . , where τ is the
time step, and approximate the temporal derivative in (1) by the standard
first order backward difference. Defining Cni ≈ C(xi, tn) as the numerical
solution, and using the spatial discretisations just derived, we obtain the fully
implicit scheme [12]

Cn+1i − Cni
τ

= − V ′iC
n+1
i −

Vi

2h
[Cn+1i+1 − Cn+1i−1 ]

+ K ′i

[
1

hα

i∑
j=0

wαj C
n+1
i−j

]
+ Ki

[
1

hα+1

i+1∑
j=0

wα+1j Cn+1i−j+1

]
, (9)

where V ′i = ∂V(xi)/∂x and K ′i = ∂K(xi)/∂x . On collecting like terms the
scheme becomes

Cn+1i − Cni
τ

=

N∑
j=0

fijC
n+1
j +

N∑
j=0

gijC
n+1
j , (10)

with coefficients

fij =


h−αK ′i w

α
i−j for j < i− 1 ,

h−αK ′iw
α
1 for j = i− 1 ,

h−αK ′iw
α
0 − V

′
i for j = i ,

0 for j > i+ 1 ,

(11)

and

gij =



h−(α+1)Kiw
α+1
i−j+1 for j < i− 1 ,

h−(α+1)Kiw
α+1
2 + Vi/(2h) for j = i− 1 ,

h−(α+1)Kiw
α+1
1 for j = i ,

h−(α+1)Kiw
α+1
0 − Vi/(2h) for j = i+ 1 ,

0, for j > i+ 1 .

(12)

Defining the numerical solution vector Cn = (Cn1 , . . . ,CnN−1) , we solve the
vector equation

(I+ τA+ τB)Cn+1 = Cn , (13)



2 Numerical methods C563

at each time step, where the matrices A and B have elements Aij = −fij and
Bij = −gij , respectively.

2.2 Finite volume method

Comparing (1) with the general transport equation

∂C(x, t)
∂t

= −
∂Q(x, t)
∂x

, (14)

we identify the total flux

Q(x, t) = V(x)C(x, t) + q(x, t) , (15)

with advective component
V(x)C(x, t) , (16)

and dispersive component

q(x, t) = −K(x)
∂αC(x, t)
∂xα

. (17)

We again consider a transport domain [a,b] that is discretised with N + 1
uniformly spaced nodes xi = a + ih for i = 0 . . .N , with the spatial step
h = (b− a)/N . A finite volume discretisation is applied by integrating (14)
over the ith control volume [xi−1/2, xi+1/2] ,∫ xi+1/2

xi−1/2

∂C(x, t)
∂t

dx = −

∫ xi+1/2

xi−1/2

∂Q(x, t)
∂x

dx . (18)

After interchanging the order of integration and differentiation on the left,
and performing the integration on the right,

d

dt

∫ xi+1/2

xi−1/2

C(x, t)dx = −
[
Q(xi+1/2, t) −Q(xi−1/2, t)

]
, (19)
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This leads to the standard finite volume discretisation

dC̄i

dt
=
1

h

[
Q|xi−1/2

− Q|xi+1/2

]
, (20)

where C̄i is the control volume average C̄i = 1
h

∫xi+1/2

xi−1/2
Cdx . No approximations

have been introduced at this point.

The flux Q has both advective and dispersive components. The key feature of
our finite volume method is the approximation of the dispersive flux q|xi±1/2
by fractionally shifted Grünwald formulas [5]. The fractional shift p = 1/2
in (6) allows us to build approximations of fractional derivatives at control
volume faces xi±1/2 in terms of function values at the nodes xj. This leads to
the fractionally shifted Grünwald formulas

∂αC(xi−1/2, t)
∂xα

≈ 1

hα

i∑
j=0

wαj C(xi−j, t) , (21)

at the face xi−1/2 , and

∂αC(xi+1/2, t)
∂xα

≈ 1

hα

i+1∑
j=0

wαj C(xi−j+1, t) , (22)

at the face xi+1/2 .

The dispersive flux is approximated at the face xi−1/2 by

q(xi−1/2, t) ≈ −K(xi−1/2)

[
1

hα

i∑
j=0

wαj C(xi−j, t)

]
, (23)

and at the face xi+1/2 by

q(xi+1/2, t) ≈ −K(xi+1/2)

[
1

hα

i+1∑
j=0

wαj C(xi−j+1, t)

]
. (24)
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Previously [5] we showed this discretisation to be of first order spatial accuracy
for the constant coefficient case. In Section 3 we show numerically that the
method retains first order spatial accuracy for the variable coefficient test
problem.

For the advective flux V(x)C(x, t) we use a standard averaging scheme

V(xi±1/2)C(xi±1/2, t) ≈
V(xi±1/2)

2
[C(xi, t) + C(xi±1, t)] , (25)

which completes the spatial discretisation.

We now define a temporal partition tn = nτ for n = 0, 1, . . . , where τ is the
time step, and approximate the temporal derivative in (20) by the standard
first order backward difference. Defining Cni ≈ C(xi, tn) as the numerical
solution, and using the spatial discretisations just derived, we obtain the fully
implicit scheme

Cn+1i − Cni
τ

=
Vi−1/2

2h

[
Cn+1i + Cn+1i−1

]
−
Vi+1/2

2h

[
Cn+1i + Cn+1i+1

]
(26)

+
Ki−1/2

h

[
1

hα

i∑
j=0

wαj C
n+1
i−j

]
−
Ki+1/2

h

[
1

hα

i+1∑
j=0

wαj C
n+1
i−j+1

]
.

Collecting like terms,

Cn+1i − Cni
τ

=
1

h

N∑
j=0

gijC
n+1
j , (27)

where

gij =



h−αKi+1/2w
α
i−j+1 − h

−αKi−1/2w
α
i−j for j < i− 1 ,

h−αKi+1/2w
α
2 − h

−αKi−1/2w
α
1 + Vi−1/2/2 for j = i− 1 ,

h−αKi+1/2w
α
1 − h

−αKi−1/2w
α
0 + (Vi−1/2 − Vi+1/2)/2 for j = i ,

h−αKi+1/2w
α
0 − Vi+1/2/2 for j = i+ 1 ,

0 for j > i+ 1 .
(28)
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For the numerical solution vector Cn = (Cn1 , . . . ,CnN−1) , we solve the vector
equation (

I+
τ

h
A
)
Cn+1 = Cn , (29)

at each time step, where the matrix A has elements Aij = −gij .

3 Numerical experiments

3.1 Example one

We compare the finite difference and finite volume methods for a test problem.
We consider the space-fractional advection-dispersion equation

∂C(x, t)
∂t

+
∂

∂x
(V(x)C(x, t)) =

∂

∂x

[
K(x)

∂αC(x, t)
∂xα

]
, (30)

for (x, t) ∈ [0, 500]× [0, T ] with the boundary and initial conditions

C(0, t) = C(500, t) = 0 for 0 6 t 6 T ,
C(x, 0) = 0.05 δ(x− 25) for 0 6 x 6 500 , (31)

and parameters K(x) = 0.06 x , V(x) = 0.1 x and α = 0.7 . This scenario was
considered by Zhang et al. [12] who used the finite difference method (13) to
obtain the numerical solution.

Our numerical solution at time T = 10 days using ∆x = 0.5 and τ = 0.1 is
shown in Figure 1, and agrees well with that obtained by Zhang et al. [12].
The heavier leading tail and the lagged peak of the fractional model, compared
to the standard Gaussian (α = 1) model, are clearly visible. The solutions
obtained using the finite difference method (13) and finite volume method (29)
are visually indistinguishable. The breakthrough curve at x = 300m is
illustrated in Figure 2 and also agrees with Zhang et al. [12]. The breakthrough
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Figure 1: Comparison of our numerical solution (solid lines) and that obtained
by digitising Figure 2a by Zhang et al. [12] (symbols) at final time T = 10 days
using ∆x = 0.5 and τ = 0.1 .

peak of the fractional model arrives slightly behind that of the Gaussian
model since the fractional model has more mass when in front of the peak [12].

Analytical solutions are unavailable for this problem. Despite this, we verify
numerically that the finite difference and finite volume methods are first
order accurate in both space and time. For verification we select sufficiently
small values of h and τ, and generate three solutions with successively refined
parameters (h, τ) , (h/2, τ/2) and (h/4, τ/4) . The order of the method is
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Figure 2: Breakthrough curve of our (solid lines) and that obtained by
digitising Figure 3a by Zhang et al. [12] (symbols) at x = 300m using
∆x = 0.5 and τ = 0.02 .

then estimated by [4, p.59]

log2

(
max

∣∣Ch,τ − Ch/2,τ/2∣∣
max

∣∣Ch/2,τ/2 − Ch/4,τ/4∣∣
)
. (32)

Using h = 0.2 and τ = 0.01 , we obtained the value 1.0 for the finite difference
method, and 0.98 for the finite volume method, which is consistent with both
methods being first order in space and time.
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3.2 Example two

We present a test problem to highlight the advantage of the finite volume
method compared to the finite difference method by examining the mass
balance error for each method. We consider the space-fractional advection-
dispersion equation

∂C(x, t)
∂t

+
∂

∂x
(V(x)C(x, t)) =

∂

∂x

[
K(x)

∂αC(x, t)
∂xα

]
, (33)

for (x, t) ∈ [0, 500]× [0, T ] together with the boundary and initial conditions

C(0, t) = C(500, t) = 0 for 0 6 t 6 T ,
C(x, 0) = δ(x− 250) for 0 6 x 6 500 , (34)

and parameters K(x) = 0.06 x , V(x) = 0.1 x and α = 0.7 .

Although this problem has homogeneous Dirichlet conditions, we still extract
meaningful mass balance errors by considering the change in mass in the
interior (non-boundary) cells compared to the mass lost due to enforced
zero boundary conditions. For the finite volume method this calculation is
straightforward as the required fluxes are already computed as part of the
discretisation.

For the finite difference method we consider two approaches. The first,
method A, computes the required fluxes as an additional post-processing
step after obtaining the numerical solution. The second, method B, simply
compares the total mass in the finite difference solution, at any time, to that
of the finite volume solution.

Figure 3 shows the computed mass balance errors up to final time T = 1 day
with ∆x = 1 and τ = 0.005 . It is readily apparent from the figure that the
finite volume method produces a solution that conserves mass (to within
machine precision). In contrast, the finite difference solution exhibits mass
balance errors many orders of magnitude larger, and growing over time. These
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Figure 3: Mass balance error for the finite difference method (fdm), methods
A and B, and the finite volume method (fvm) using ∆x = 1 and τ = 0.005 .

conclusions are independent of whether method A or method B is used to
compute the mass balance errors.

This example clearly illustrates the advantage of the finite volume method
over the finite difference method for problems of this nature. The inherent
conservativeness of the finite volume method yields precise mass balance,
whereas the finite difference method provides no such guarantee.
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4 Conclusion

We considered a space-fractional advection-dispersion equation with variable
coefficients on a one dimensional finite domain with homogeneous Dirichlet
boundary conditions. Finite difference methods for solving this equation
require that the product rule is first applied, and then the Riemann–Liouville
fractional derivatives are discretised using standard and shifted Grünwald
formulas, depending on the fractional order. We presented a finite volume
method that deals directly with the differential equation in conservative form.
Fractionally shifted Grünwald formulas are used to discretise the fractional
derivatives at control volume faces, eliminating the need for product rule
expansions.

Numerical experiments confirm that both methods recover the correct solution
for a test problem. Additionally, both methods are confirmed numerically to
be first order in space and time. However, we showed that the finite volume
method produces a solution which is conservative, whereas the finite difference
method does not. We conclude that the finite volume method is preferable
for solving the space-fractional advection-dispersion equation with variable
coefficients.
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