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Abstract

Thin plate spline finite element methods are used to fit a surface
to an irregularly scattered dataset. The computational bottleneck for
this algorithm is the solution of large, ill-conditioned systems of linear
equations at each step of a generalised cross validation algorithm. Pre-
conditioning techniques are investigated to accelerate the convergence
of the solution of these systems using Krylov subspace methods. The
preconditioners under consideration are block diagonal, block triangu-
lar and constraint preconditioners. The effectiveness of each of these
preconditioners is examined on a sample dataset taken from a known
surface. From our numerical investigation, constraint preconditioners
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appear to provide improved convergence for this surface fitting problem
compared to block preconditioners.
Subject class: 65F08
Keywords: preconditioning, krylov subspace, thin plate splines, surface
fitting
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1 Introduction

The thin plate spline finite element method, as proposed by Roberts et al. [9],
fits a surface defined by a set of m basis functions on an arbitrary domain Ω
to a set of n data points (xi,yi)i=1,...,n . The fitted surface is obtained by
minimising a linear combination of the residual of the estimated surface
at the data points and a measure of the smoothness of the surface. The
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weight of each term is varied by the smoothing parameter, α > 0 . The
inclusion of a smoothing term is to allow a unique surface to be reconstructed
from the scanned dataset. In the case of virtualising plant leaves, error is
introduced into the data points, which varies with the particular scanning
device used to capture the dataset. Due to the presence of measurement error,
generalised cross validation (gcv) is used to determine the optimal smoothing
parameter [13]. The result of this process is that a number of linear systems
of the form (A+ αBBT)u = b , where A is positive semidefinite and sparse,
must be solved for each gcv function evaluation.

The solution of these linear systems is a computational bottleneck for this
problem when m is large. Each linear system is of the form of a saddle point
problem and preconditioning this problem type is the subject of substantial
research [2, 1, 3, 4, 5, 7, 6, 12, e.g.]. Block diagonal, block triangular and
constraint preconditioners [2] are investigated to accelerate the convergence of
the iterative method applied to the saddle point problem. The linear systems
have shifted coefficient matrices, due to the smoothing parameter α, with
two different right hand side (rhs) vectors. The efficient solution of a single
linear system for a single value of α is the focus of this paper.

The thin plate spline smoother algorithm is outlined in Section 2 and the
different preconditioning methods are detailed in Section 3. The computational
statistics obtained from the iterative algorithm using these preconditioners is
presented in Section 3 for a sample problem based on the peaks function in
Matlab. Conclusions and recommended future work are outlined in Section 5.

2 Thin plate spline smoother

The thin plate spline smoother uses the analogy that the points lie on a
thin metal sheet, which is twisted and bent to fit the data. The quality
of the surface is measured in terms of the error between the fitted surface
and the known value at the data points, as well as a smoothing term, which
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is introduced to control the amount of bending and twisting of the plate.
The functional form of this surface on the domain Ω ⊂ R2 is the solution
s(x) ∈ H2(Ω) that minimises the functional

min
s∈H2(Ω)

J̄α(s,y) := ‖s(x) − y‖2n + α|s|
2
H2(Ω) , (1)

where

|s|2H2(Ω) =

∫
Ω

[(
∂2s

∂x21

)2
+ 2

(
∂2s

∂x1∂x2

)2
+

(
∂2s

∂x22

)2]
dx ,

〈u,v〉n = n−1uTv ,

‖u‖2n = 〈u,u〉n .

Wahba [13] showed that the optimal value of α depends on the noise in the
data and can be determined using gcv.

Roberts et al. [9] reformulated (1) to a H1(Ω) minimisation problem by
solving for u, defined as u := ∇s . However, this condition is generally
only satisfied in the weak sense (∇s, ∇v) = (u, ∇v) for all v ∈ H1(Ω) for
arbitrary functions u1,u2 ∈ H1(Ω) , where u = [u1,u2]

T . This formulation
is equivalent to the original formulation when the condition curl(u) = 0 is
enforced. Roberts et al. [9] recommend dropping this condition to simplify
the solution process.

The Neumann boundary value problem

∆s = ∇ · u in Ω ,
∇s · n = u · n on δΩ . (2)

is also satisfied by s. The constraint

〈s(x), e〉n = 〈y, e〉n ,

is imposed to ensure a unique solution of (2), where e is a vector of all ones.
The solution s of (2) is denoted Φ(u).
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The reformulation determines u such that

u(x) = argmin
H1(Ω)2

‖Φ(u) − y‖2n + α
(
|u1|

2
H1(Ω) + |u2|

2
H1(Ω)

)
, (3)

where, for example,

|u1|
2
H1(Ω) =

∫
Ω

[(
∂u1

∂x1

)2
+

(
∂u1

∂x2

)2]
dx .

A discretisation of the domain Ω is required, providing a set of m nodes
and a triangular mesh. A set of basis functions h(x) ∈ H1(Ω)m is defined to
discretise the problem, which gives

s(x) = h(x)Tc , u1(x) = h(x)Tg1 , u2(x) = h(x)Tg2 .

The basis functions are chosen as piecewise linear elements, satisfying hi (xj) =
δij , with δij the Kronecker delta. The finite element discretisation of (3)
and (2) for fixed α yields the minimisation problem

min
c,g1,g2

(∥∥ỹ −HTc
∥∥2
n
+ αgT1Lg1 + αgT2Lg2

)
,

subject to
c = L† (G1g1 +G2g2) ,

where Hij = hi(xj) is a matrix containing the basis functions evaluated at the
data points

Lij = (∇hi,∇hj)L2(Ω) , G1ij = (∂x1hi,hj)L2(Ω) , G2ij = (∂x2hi,hj)L2(Ω) .
(4)

Operator L† is a generalised inverse of L satisfying L†He = 0 and ỹ =
y − 〈y, e〉ne . The inner product is defined as (u, v)L2(Ω) =

∫
Ω
uvdx . This

minimisation problem is equivalent to the equality constrained quadratic
programming problem

min
v

vTAv − vTd , such that Bv = 0 , (5)
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where

A =

HHT/n 0 0

0 αL 0

0 0 αL

 , d =

Hy/n
0
0

 ,

B =
[
I −L†G1 −L†G2

]
, v =

 c
g1
g2

 . (6)

The use of Lagrange multipliers provide an efficient method of obtaining a
solution of (5) [14] and results in the need to solve, for a given α, the system
of linear equations

Ax =

[
A BT

B 0

] [
v
w

]
=

[
d
0

]
= b . (7)

Problems of this form are saddle point problems [2]. The aim of this work is
to investigate efficient solution techniques for systems of linear equations of
the form (7).

Benzi et al. [2] reviewed approaches for efficiently solving saddle point prob-
lems, focusing on large and sparse linear systems. They remarked that
classical methods for solving saddle point problems include null space meth-
ods, which were originally used by Roberts et al. [9]. They, amongst oth-
ers [1, 3, 4, 5, 7, 6, 12], also discussed preconditioned Krylov subspace methods
and concluded that effective preconditioners are under development for many
classes of linear systems [2, p. 108].

The solution of these linear systems is the primary computational bottleneck
for the algorithm of these typically large linear systems. In such cases,
direct solution techniques are unable to obtain a solution in reasonable time,
necessitating the use of iterative methods. Preconditioning approaches are
investigated in Section 3 to accelerate the convergence of these iterative
methods.
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3 Solution approaches

Efficient solution methods for saddle point problems have been the subject of
substantial research due to their regular occurrence in a variety of problems [2,
1, 3, 4, 5, 6, 7]. Benzi et al. [2] provided an overview of ideal preconditioners
for saddle point problems. Two types of preconditioners are investigated here,
namely block preconditioners and constraint preconditioners.

3.1 Block preconditioners

Two different forms of block preconditioners are under consideration, block
diagonal PD, and block triangular PT , which are

P−1
D =

[
A−1 0

0 −S−1

]
, P−1

T =

[
A−1 0

−S−1BA−1 S−1

]
, (8)

respectively. Here, S is the Schur complement, S = −BA−1B . Both these
block preconditioners are applied on the left of the linear system.

De Sturler and Liesen [12] gave the complete eigendecomposition of P−1
D A.

Interestingly, the eigenvalues cluster around the three points 1, 1
2
(1 +

√
5)

and 1
2
(1−
√
5) [7, e.g.]. Benzi et al. [2] showed that P−1

T A has 1 as its distinct
eigenvalue.

Both block preconditioners require that A is nonsingular. However, our prob-
lem has nullity(A) > 2 , indicating that the matrix is singular. One common
approach taken to overcome the singular nature is to use an augmented La-
grangian formulation [5], which replaces A with AW = A+BTWB , whereW is
a symmetric positive semidefinite matrix. Greif et al. [4] analysed the choice
W = γI and stated that the choice γ = ‖A‖2/‖B‖22 is shown experimentally
to be effective. The presence of L† in B causes AW to be predominantly dense,
thus losing the block diagonal structure of A. Greif et al. [4] stated that, in
practise, an approximation to AW is often used, which will not be considered
in this paper.
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3.2 Constraint preconditioners

The second type of preconditioning strategy used is a constraint precondi-
tioner [2]. This type of preconditioner takes the form

PC =

[
Z BT

B 0

]
,

which is the same as A with the (1, 1) block modified. Generally, Z is chosen
implicitly based on the Schilders factorisation [1], namely

PC =

BT1 0 M1

BT2 M2 E

0 0 I

D1 0 I

0 D2 0

I 0 0

 B1 B2 0

0 MT
2 0

MT
1 ET I

 . (9)

Choosing the components of this factorisation to match

A =

A11 A12 BT1
A21 A22 BT2
B1 B2 0

 ,

and noting that A11 = HHT/n , A12 = AT21 = 0 , A22 = diag (αL,αL) , B1 = I
and B2 = [−L†G1,−L†G2], gives

D1 = A11 −M
T
1 −M1 ,

D2 =M
−1
2

(
A22 + B

T
2A11B2

)
M−T

2 , (10)
E = −BT2 (A11 −M1) ,

where M1 is any matrix and M2 is any nonsingular matrix. Benzi and Wa-
then [1] claimed that any choice of D1, E andM1, and any nonsingular choice
of D2 and M2, provide a suitable preconditioner. Furthermore, the conju-
gate gradient algorithm (CG) [10] is applicable because this preconditioner,
in conjunction with the linear system (7), results in the elimination of the
constraints [1, p. 203].
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4 Results

The sample function used to assess the effectiveness of the preconditioners was
the peaks function of Matlab. The function was sampled at 10 000 random
points uniformly distributed on the unit square. The nodes were chosen to
be on each corner and at 496 randomly distributed points in the interior
of the unit square (500 nodes in total). The resulting linear system had
dimension 2 000 and GMRES [11] was used to solve the linear system with the
block preconditioners because the preconditioned system is not symmetric.
The Hestenes–Stiefel conjugate gradient method was used with the constraint
preconditioner. The two values chosen for the smoothing parameter α are
10−10 and 10−2. The condition number for the coefficient matrices in (7) for
these choices of α are approximately 5× 1010 and 7× 105, respectively. The
desired convergence tolerance is 1× 10−8 ‖b‖ , with ‖b‖ ≈ 122.866 .

4.1 Block preconditioners

The results of the block preconditioners are compared using the exactly formed
PD and PT in (8) using the augmented Lagrangian formulation in Matlab.
The choice W = γI is made, with γ = ‖A‖2/‖B‖22 . The effect of using these
preconditioners is shown in Table 1.

Using the exact form of the preconditioners results in extremely rapid con-
vergence, as expected by the eigenvalue decomposition of the preconditioned
matrices [12]. However, the use of the exact preconditioners is impractical for
solutions of large linear systems, due to the time required to construct the
matrices and the memory required to store them. By means of comparison,
applying PD and PT through solving a linear system Px = z with a Krylov
subspace solver, for some z, produces extraordinary computation times. This
is primarily due to solving linear systems with S as the coefficient matrix,
whereby multiplying a vector by S requires the inversion of AW. This will
produce unreasonable times for even moderately sized linear systems. For
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Table 1: Comparison of the preconditioners using the augmented Lagrangian
formulation, using exact forms of the block preconditioners.

Preconditioner α Iterations Residual norm Time (s)

None 10−10 1390 4.8× 10−8 46.9
10−2 537 1.3× 10−9 13.4

Triangular 10−10 4 8.8× 10−8 2.7
10−2 3 2.6× 10−8 2.3

Diagonal 10−10 6 1.1× 10−4 3.0
10−2 3 3.0× 10−8 2.2

fitting surfaces with a small number of nodes using thin plate splines, this
finite element method is highly applicable if the matrices are explicitly formed
and stored in memory. In situations where this is not possible, approxima-
tion methods for the block preconditioners must be utilised to achieve any
improvement in solving the linear system.

4.2 Constraint preconditioners

The constraint preconditioner used is the Schilders factorisation (9) with
elements described in (10). The matrices M1 and M2 are both chosen as
the identity matrix. With these choices, to apply this preconditioner only
linear systems of the form D2x = b need be solved. This linear system was
solved inexactly using MINRES [8] with the convergence tolerance τ varied to
determine the effect that the solution of this linear system has on the overall
performance of the preconditioner.

Tables 2 and 3 show that the convergence tolerance used to solve the in-
ner linear system within the preconditioner has an impact on the overall
performance of the iterative method. The use of a tolerance larger than
τ > 1× 10−5 caused the preconditioner to stagnate, as opposed to converging
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Table 2: Effect of the iterative scheme for the D2x = b linear system with
α = 10−2 for varying tolerance τ.

Tolerance Iterations Residual Norm Termination Time (s)
1× 10−10 2 7.7× 10−8 Converged 23.3
1× 10−9 2 9.9× 10−8 Converged 22.1
1× 10−8 2 1.3× 10−7 Converged 21.6
1× 10−7 2 9.2× 10−8 Converged 20.7
1× 10−6 2 1.1× 10−6 Converged 19.6
5× 10−6 3 4.7× 10−6 Converged 20.6
1× 10−5 3 8.5× 10−6 Converged 20.7
1× 10−5 − 5.4× 10−5 Stagnation 75.1

Table 3: Effect of the iterative scheme for the D2x = b linear system with
α = 10−10 for varying tolerance τ.

Tolerance Iterations Residual Norm Termination Time (s)
1× 10−10 5 5.3× 10−6 Converged 58.4
1× 10−9 5 6.7× 10−6 Converged 56.4
1× 10−8 5 3.7× 10−6 Converged 54.5
1× 10−7 6 2.2× 10−6 Converged 53.1
1× 10−6 7 1.3× 10−6 Converged 50.9
5× 10−6 17 9.6× 10−6 Converged 88.2
1× 10−5 40 9.0× 10−6 Converged 138.5
5× 10−5 − 4.3× 10−3 Stagnation 125.2
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Table 4: Summary statistics for 150 test datasets to assess the effect of the
inner linear system convergence tolerance on the overall iterative scheme.

Tolerance Mean wall Average inner iterations
τ clock time (s) α = 1× 10−2 α = 1× 10−10

1× 10−10 40.7 315 506

1× 10−9 40.0 302 484

1× 10−8 37.1 289 454

1× 10−7 34.3 274 398

1× 10−6 34.1 250 262

5× 10−6 56.4 174 140

1× 10−5 81.2 130 93

5× 10−5 100.8 43 63

to the solution of the linear system. This sudden change in convergence
may be due to the preconditioner no longer exactly satisfying the constraint
conditions, thus causing the preconditioned system to not be symmetric and
positive definite, resulting in the failure of CG. On the other hand, the use of
a tolerance too small causes over-solving of the inner linear system, achieving
no further reduction in the number of outer iterations required to converge
to the solution.

In order to determine an appropriate tolerance τ, the effect of the individual
dataset must be removed. Table 4 shows summary statistics for 150 sample
datasets, generated using the method described at the beginning of Section 4.
Analysis of variance shows that there is a statistical difference between the
mean wall clock times averaged over α for different tolerance levels (F = 1888 ,
d.f. = 7). However, there is no statistical difference between the mean wall
clock times for τ = 1× 10−6 and τ = 1× 10−7 averaged over α. In light of
τ = 1× 10−6 requiring fewer inner iterations (on average) than τ = 1× 10−7 ,
this value for the inner convergence tolerance provides the best trade off
between solving the inner linear system exactly and the total time taken.
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5 Conclusion

Block preconditioners and constraint preconditioners were investigated to
determine their effectiveness for accelerating convergence to the solution of
linear systems in the evaluation of the gcv function from the thin plate
spline smoother. The use of block preconditioners is impractical because
the approximations made to reduce computational requirements cause these
preconditioners to be ineffective, also, the loss of symmetry of the coefficient
matrix requires GMRES to be utilised. The use of a constraint preconditioner ac-
celerated the convergence to the solution of the linear system by the conjugate
gradient method. The effectiveness of the constraint preconditioner is also de-
termined by solving the inner linear system D2x = b , with tolerance 1×10−6
being most efficient for the size of problems studied here.

Future work will involve the use of block conjugate gradient methods to solve
multiple linear systems with the same coefficient matrices at the same time
and preconditioning methods for alternative choices of M2 to improve the
rate of convergence of the inner linear system.
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