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Abstract

We consider approaches to the numerical difficulties posed by mod-
elling resistive networks with dynamically changing resistances accord-
ing to a set of coupled ordinary differential equations (odes). The
prototype problem is autoregulation on a cerebral microvascular net-
work. In this network the amount of perfusion, or tissue blood supply,
is determined by the resistance of the vascular network. This resistance
can be dynamically altered to regulate the amount of blood flow and
hence maintain a balance of chemicals and nutrients in the tissue. The
mechanisms responsible for this are primarily local, and are due to
various chemical pathways to the vascular smooth muscle cells lining
the arterioles and arteries in the vasculature. These cells contract
and dilate, which alters the radii and hence resistance of the vessels.
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Because of the global coupling induced by the resistive network, the
resulting stiff system of odes has a dense Jacobian which precludes the
direct application of traditional implicit numerical solution methods.
We consider a means of remedying this problem by taking a block di-
agonal Jacobian approximation which allows use of an implicit method
but retains the desirable property of explicit solvers of linear solution
time scaling with problem size.
Subject class: 65L99
Keywords: resistive network, stiff, ordinary differential equations, brain,
autoregulation
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1 Introduction

Motivated by the cerebrovascular autoregulation problem described by David
et al. (2010), we consider network models whose potential and flow is analogous
to those of a resistive network, but whose resistances are determined by a
coupled system of ordinary differential equations (odes), which in turn depend
on the potential and flow throughout the network tree.
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Consider a network described by a directed graph. We prescribe a direction
for the flows on each of the n edges and represent the graph by an incidence
matrix A, whose ijth entry is aij = −1 if edge j enters node i, aij = 1 if edge j
exits node i, and aij = 0 otherwise. Each edge j of the graph is assigned a
conductance (reciprocal of resistance) gj. The constitutive relation giving the
flow through the edge is Ohm’s law: if the difference in potential between the
start and end nodes of edge j is wj, then the directed flow through edge j is
qj = gjwj , or in matrix form q = Gw ∈ Rn , where G = diag g .

To solve for pressure and flow throughout the network, we define a number of
nodes as boundary nodes and prescribe fixed potentials at each of these. We
remove the corresponding rows from the incidence matrix to obtain a modified
incidence matrix A ∈ Rm×n where m is the number of internal nodes. The
potential differences, written in matrix form, are

w = ATp+ b .

Flow conservation at each node yields conservation equations

Aq = AGw = 0 ,

and thus the vector of potentials p ∈ Rm is given by the positive definite
linear system

AGATp = −AGb . (1)

The class of models we consider takes such a network and couples it to a
system of odes. The differential equations for the state variables x ∈ Rl may
depend on the potentials p in the network. The system of odes may arise, for
example, as a discretisation of a reaction-diffusion partial differential equation.
Additionally, the conductances of the edges are algebraically dependent on
the state variables of the ode system, and the boundary potentials b(t) may
be time varying. We are thus considering semi-explicit index-1 dae systems
of the form

dx

dt
= f(t, x,p) ,

0 = AG(x)
[
ATp+ b(t)

]
. (2)
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The system can naively be solved by a standard ode solver by transforming
it into an ode system:

dx

dt
= f

(
t, x,

[
AG(x)AT

]−1
AG(x)b(t)

)
. (3)

If the problem does not exhibit stiffness, then an explicit solver, such as a
Runge–Kutta method can be used directly to solve (3). The system (1) is
sparse and positive definite and, depending on its structure, is efficiently solved
by the conjugate gradient method or direct sparse Cholesky factorisation.
In other words, function evaluations for this system are relatively cheap.
However, if the system is stiff, then explicit methods become highly inefficient
and an implicit (or implicit-explicit) method is required, which entails solving
a nonlinear system at each time step by Newton’s method. Gear (1971),
Iserles (2009) and Shampine and Gordon (1975) provided detailed descriptions
of computational considerations required to solve stiff odes. The Newton
matrix for implicit multistep solvers is

M(t, x) = I− γJ(t, x) , (4)

where γ is proportional to the current time step length, and J is (an approx-
imation to) the Jacobian of the system. Except in special cases where the
Jacobian evaluation and solution of Mw = d is cheap, the modified New-
ton’s method is typically more computationally efficient (Iserles, 2009, §7.2),
whereby J is held constant over the Newton iteration, and potentially a num-
ber of time steps, sacrificing quadratic convergence rather than reevaluating J
and its factorisation, or preconditioner (if using Krylov methods).

The Jacobian of (3) is

J =
∂f

∂x
+
∂f

∂p

∂p

∂g

∂g

∂x
. (5)

While for a typical problem the terms ∂f/∂x, ∂f/∂p and ∂g/∂x are likely to
be sparse, the term ∂p/∂g is

∂p

∂g
= −
{
A diag [g(x)]AT

}−1
A diag

(
ATp+ b

)
, (6)
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a dense matrix. Therefore, the system Jacobian J is also dense, precluding its
direct evaluation for a large scale problem.

There are two apparent approaches to modifying the problem to make it
amenable to implicit differential equation solvers. The first is to take advantage
of the fact that Newton’s method tends to be relatively tolerant to errors in
the Jacobian, and hence use a sparse approximation to the Jacobian in (4).
As long as the approximation Ĵ is sufficiently close to the true Jacobian,
Newton’s method still converges. A mathematical justification of this process
is similar to that provided by Iserles (2009, §7.2) to explain the convergence
of the modified Newton’s method.

The second approach is to use Krylov subspace methods to solve the system
Mw = d that arises in Newton’s method using matrix-free Jacobian-vector
product approximations (Knoll and Keyes, 2004) to avoid explicitly formu-
lating the Jacobian. We consider the former approach, and show that for
the cerebral autoregulation problem this approach leads to a fully implicit
method that scales linearly with the problem size.

2 Block diagonal Jacobian direct solver

As already stated, for large scale problems it is not feasible to construct
the full Jacobian of the system to use in a direct linear solver. One way to
mitigate this problem is to use direct methods to solve the linear system but
with a sparse or banded approximation of the Jacobian.

We choose the approximation of J to have block diagonal structure so the
factorisation and solution decompose into as many independent tasks as there
are blocks, and hence the decomposition yields a natural parallelisation of
the problem. Because of the form of (5), we cannot evaluate block diagonal
entries independently, so we form an approximation to the block diagonal
entries of the Jacobian that are more efficiently computable.
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To form the approximate Jacobian Ĵ from some state x at time t, we first
compute the conductances g and potentials p throughout the network by (1).
Then, we group the edges of the graph into N distinct subsets E1, . . . ,EN, and
likewise partition the state variables into N corresponding subsets. The state
variables are assumed to be ordered such that the indices of each partition
are a convex subset of {1, . . . , l} . Then, each of the vertices which has
connecting edges in two or more of the partitions is set to be a constant valued
boundary vertex, and is set to the constant potential from the computed p.
This effectively decouples the network into a number of discrete pieces with
constant potential boundaries. Let the indices of the newly formed boundary
nodes be denoted B, and the remaining active indices A. Then let the
corresponding vector of boundary potentials be denoted pB, and the active
nodes pA. Likewise, denote AA the matrix formed from the rows of A
corresponding to A, and similarly define AB. Then the potential difference
equation becomes

w = ATp+ b = ATApA + (ATBpB + b) = ATApA + b̂ . (7)

Then, from (6), we form an approximation to ∂p/∂g, whose rows are deter-
mined by

∂pA

∂g
= −
{
AA diag [g(x)]ATA

}−1
AA diag (w) ,

∂pB

∂g
= 0 . (8)

We then form our approximate Jacobian from (5), using only the block
diagonal entries of ∂f/∂x and using the approximate ∂p/∂g. From the method
of construction, the product term in (5) automatically has the required block
diagonal structure. The Jacobian approximation Ĵ is then of the form

Ĵ =

Ĵ1 0
. . .

0 ĴN

 ,
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and each block is inverted independently.

For implicit methods using the modified Newton’s method, when solving the
nonlinear system of equations required to progress xk to xk+1, the Newton
update is (Iserles, 2009)

w[i+ 1] = w[i] −M−1{w[i] − β− hg(w[i])} , i = 1, 2, . . . , (9)

where h is the step size. The evaluation of g involves evaluating the right
hand side of (3), and w converges to xk+1. For the backward Euler method,

g(x) = f(tk+1, x) and β = xk .

This formulation is therefore well suited to a parallel environment, as M is
constructed and inverted independently in parallel, and the Newton iteration
steps also proceed in parallel, except for a single function evaluation. So if
the evaluation of the right hand sides of the full ode system (3) is evaluated
efficiently, then the problem has a significant amount of parallelism for
exploitation.

The potential difficulty in this approach is the choice of partitioning. However,
in some applications, such as where there are a number of subnetworks linked
by a high conductance ‘conduit’ network (as is the case in various vascular
networks in biology) the choice is straightforward.

3 Cerebrovascular autoregulation model

We apply the methodology to a model of cerebrovascular autoregulation. We
use a simplified phenomenological model that exhibits qualitatively correct
responses to changes in blood pressure, local metabolism, and arterial CO2.
This model serves as a test for the numerical procedure. The aim of the project
is to eventually incorporate the important biochemical pathways involved
in neurovascular coupling (Attwell et al., 2010) to study the function and
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pathology of cerebral perfusion at the macroscopic scale. Here, we present
an outline of the model structure, omitting the derivations of the equations.
Full details of the phenomenological model will be presented in a forthcoming
publication. David and Moore (2008), Alastruey et al. (2007), David et al.
(2010), and Farr and David (2011) provide more background.

For this cerebrovascular autoregulation application, the network in question
is a tree-like structure of blood vessels modelling a portion of the cerebral
vasculature branching off the large cerebral arteries. The tree is assumed to
be a binary tree, branching to progressively smaller and shorter vessels until
reaching the terminal arterioles, of radius approximately 10µm, which are
then assumed to interface with the capillary bed, a mesh of fine capillaries,
which is assumed to be at some constant pressure. The tree bifurcates
in a space filling manner which is difficult to specify algorithmically with
anatomically correct branching ratios and angles, so, as an approximation to a
realistic network, we use a space filling H-tree to describe the geometry of the
network. At each bifurcation the radius of the daughter vessels is 1/

√
2 the

radius of the parent, and the length is divided by two every second bifurcation.
The smallest vessels are defined to have radius 10µm and length 200µm, and
the scale of the model is therefore determined by the number of levels in the
tree. A tree of eleven levels, approximately representing a 6× 6mm square
0.2mm thick slice of tissue, is depicted in Figure 1. The vessel scalings are
of a similar order of magnitude to the more physiologically accurate model
of Ottesen et al. (2004).

At the scales of the models, the Womersley number is very small and a
Poiseuille approximation for blood flow in a tube is appropriate. In other
words, the flow q through a vessel is a function of vessel radius r and length l,
and is linear in the pressure drop w over the length of the vessel, that is,
satisfying Ohm’s law and defining a resistive network. After appropriate
nondimensionalisation the flow is

q = gw , where g =
r4

l
. (10)

The conductance is highly sensitive to the radius of the vessel. We assume
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Figure 1: 6× 6× 0.2mm tissue slice with H-tree vasculature.

a constant capillary bed pressure pc, and a potentially time varying pres-
sure p0(t) at the root of the tree.

The tree is embedded in a two dimensional spatial domain which is discretised
into a number of blocks, one for each terminal arteriole of the vascular network.
Each block is modelled by a two-compartment CO2 exchange model, one
compartment representing the volume fraction of the block occupied by the
capillary network, and one compartment representing the tissue. Metabolic
consumption of oxygen in the tissue yields CO2 as a byproduct, specified as
a time and spatially varying rate of CO2 production µ(t, x) . The capillary
walls are permeable to CO2 and so we consider passive CO2 diffusion across
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Figure 2: Two-compartment model of CO2 transfer in the capillary bed.

the total capillary wall surface area within the block, and transport in and
out of the capillary compartment. The tissue model structure is depicted in
Figure 2. The dimensionless equations for a tissue block are

νċb = q(cin − cb) + α(ct − cb) ,
(1− ν)ċt = α(cb − ct) + µ(t, x) , (11)

where µ represents a constant metabolic rate of CO2 production due to
O2 metabolism and where q is the flow into that block from its associated
arteriole.

We model the activity of the smooth muscle by the phenomenological model

ḟ = −
f− f∞(ct)

τm
, (12)

where f∞(ct) : R+ → [0, 1] is a monotonically decreasing sigmoid, to represent
that an increased buildup of tissue CO2 requires a relaxation of the vessel in
order to allow increased convective removal of CO2. The time constant τm
models the rate at which the smooth muscle is recruited or deactivated.
Finally, the various components are linked together by a simple model of the
arterial wall:

ṙ = −a1r+ a2pTr− a3f+ a4. (13)
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This equation is derived from a balance of the thin walled Laplace stress
with the viscoelastic and active stress developed in the wall by the elastic
and smooth muscle components of the vessel tissue. Again, full details of
the model will be presented in a forthcoming publication. The flow in the
vascular tree is most sensitive to relative radius perturbations in the smallest
vessels, as it is in these vessels that most of the pressure drop from the input
to the capillary bed pressures occurs. We therefore model the autoregulation
mechanism only on the smallest vessels, leaving the remaining vessels in the
tree with constant radius.

To partition the tree for Jacobian approximation, we split the tree into
a number of subtrees, setting the boundary nodes pB where the subtrees
interface with the root subtree, as shown in Figure 3. For a large tree, the
sparsity of the Jacobian is controlled by specifying the number of levels each
subtree spans NS.

To test the scalability of the method with problem size, without measuring
the complexities of a full featured ode solver, we ran a simple simulation
using a fixed step backward Euler method as the numerical solution, with a
constant number of Newton steps per time step, modelling the response of the
network to a step increase in input pressure. The approximate Jacobian was
created once at the beginning of the simulation and used for the remainder of
the simulation. The algorithm was implemented in C, compiled using gcc 4.7,
and used CSparse (Davis, 2006) for the sparse matrix operations (sparse
Cholesky and sparse lu decomposition), and code was run in a single thread
on a mobile Intel Core i5 (Sandy Bridge) processor with 8gb of ram, under
Ubuntu 12.04.

We scaled the problem size, that is the total number of levels in the tree,
keeping the subtree size constant, and measured the elapsed solution time.
Both the Jacobian computation and the Newton iterates scale linearly with
problem size (defined as the dimension l of the state space of (3)), as expected.
The total solution time is plotted in Figure 4. Increasing the subtree size
for a fixed problem size increases the computation time significantly. This
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Figure 3: Partitioning of network for Jacobian approximation. The nodes
marked in red are the boundary nodes pB, and the nodes marked in blue are
the active nodes pA. For clarity, the tree is depicted using a more conventional
layout.

is because of the increased memory and computation required to store and
invert the larger Jacobian blocks. The curves for subtrees of three and five
levels are very similar. This similarity is due to the choice of implementation;
the penalty for having many blocks in this implementation is the overhead
of calling multiple forward and backward solves, one for each block, rather
than storing the larger block matrix as a single entity and calling a single
forward/back solve.
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Figure 4: Linear scaling of solution time with problem size. Solution time
includes a single Jacobian computation and a number of Newton iterations.
The different lines represent different numbers of subtree levels NS.

4 Discussion and future work

We showed that using a block diagonal Jacobian approximation formed from
network partitioning is very effective in a direct linear solver for an implicit
ode method on a large scale resistively coupled stiff dynamic network. We
have not investigated the use of Krylov subspace methods, which also avoid
evaluating the full Jacobian by using matrix-free Jacobian-vector products.
The Jacobian approximation developed in this work is likely to work effectively



4 Discussion and future work C184

as a preconditioner for methods such as those in Sundials CVODE (Cohen
and Hindmarsh, 1996; Hindmarsh et al., 2005), and this approach may be
well suited to networks where convergence of Newton’s method requires
undesirably large Jacobian blocks. Another approach that warrants further
exploration is the use of explicit exponential integrators. These are formulated
in a Jacobian-free manner and were shown to perform similarly to traditional
stiff solvers (Carr et al., 2013).

For biological problems involving dynamically varying vascular trees, the
methods presented in this article present an appropriate paradigm, due to the
weak coupling between vessels that are a long distance from each other in the
tree. This weak coupling occurs because the vessels closer to the root of the
tree are of relatively low resistance, so the change in pressure in an upstream
vessel due to a downstream flow perturbation in a single vessel is very small,
and hence has minimal influence on the other downstream vessels. However,
this situation would be markedly different if we considered phenomena like
blockage of upstream vessels.

In Section 2 we alluded to the potential for significant parallelism of the
problem, and indeed work is in progress to implement a scalable parallel
version of the code for a more realistic biological network including detailed
cellular models, designed to run on up to 128 cores on a ibm Power 7 smp
machine. In addition to the parallelism inherent in a Newton step due to the
Jacobian structure, it is possible to solve the pressure and flow equations (1)
with high parallel efficiency with a modest number of computational nodes, but
these considerations add considerable extra complexity to the implementation.

Acknowledgements I thank anonymous reviewers for their helpful feed-
back and suggestions.



References C185

References

J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peir, and S. J...
Sherwin. Reduced modelling of blood flow in the cerebral circulation :
Coupling 1-D , 0-D and cerebral auto-regulation models. International
Journal for Numerical Methods in Fluids, 2007. doi:10.1002/fld.1606. C178

David Attwell, Alastair M. Buchan, Serge Charpak, Martin Lauritzen,
Brian a Macvicar, and Eric a Newman. Glial and neuronal control of brain
blood flow. Nature, 468(7321):232–43, November 2010.
doi:10.1038/nature09613. C177

E. J. Carr, I. W. Turner, and P. Perré. A variable-stepsize Jacobian-free
exponential integrator for simulating transport in heterogeneous porous
media: Application to wood drying. Journal of Computational Physics, 233:
66–82, January 2013. doi:10.1016/j.jcp.2012.07.024. C184

Scott D. Cohen and Alan C. Hindmarsh. CVODE, a stiff/nonstiff ODE
solver in C. Computers in Physics, 10(2):138–143, 1996. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.5594.
C184

T. David and S. Moore. Modeling perfusion in the cerebral vasculature.
Medical engineering & physics, 30(10):1227–45, December 2008.
doi:10.1016/j.medengphy.2008.09.008. C178

T. David, Thomas van Kempen, Huaxiong Huang, and Phillip Wilson. The
geometry and dynamics of binary trees. Mathematics and Computers in
Simulation, 81(7):1464–1481, 2010. doi:10.1016/j.matcom.2010.04.020.
C172, C178

Timothy A. Davis. Direct Methods for Sparse Linear Systems. Society for
Industrial Mathematics, 2006. C181

http://dx.doi.org/10.1002/fld.1606
http://dx.doi.org/10.1038/nature09613
http://dx.doi.org/10.1016/j.jcp.2012.07.024
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.5594
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.5594
http://dx.doi.org/10.1016/j.medengphy.2008.09.008
http://dx.doi.org/10.1016/j.matcom.2010.04.020


References C186

Hannah Farr and Tim David. Models of neurovascular coupling via
potassium and EET signalling. Journal of theoretical biology, July 2011.
doi:10.1016/j.jtbi.2011.07.006. C178

C. William Gear. Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice Hall PTR, 1971. C174

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu
Serban, Dan E. Shumaker, and Carol S. Woodward. SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers. ACM Transactions on
Mathematical Software, 31(3):363–396, 2005. doi:10.1145/1089014.1089020.
C184

Arieh Iserles. A First Course in the Numerical Analysis of Differential
Equations. Cambridge University Press, Cambridge, 2 edition, 2009. C174,
C175, C177

D. A. Knoll and D. E. Keyes. Jacobian-free Newton–Krylov methods: a
survey of approaches and applications. Journal of Computational Physics,
193(2):357–397, January 2004. doi:10.1016/j.jcp.2003.08.010. C175

J. T. Ottesen, M. S. Olufsen, and J. K. Larsen. Applied Mathematical
Models in Human Physiology. SIAM Monographs on Mathematical
Modelling and Computation, 2004. C178

Lawrence F. Shampine and Marilyn Kay Gordon. Computer solution of
ordinary differential equations : the initial value problem. San Francisco :
W.H. Freeman and Co., 1975. C174

Author address

1. Richard G. Brown, Bluefern High Performance Computing Centre,
University of Canterbury, Christchurch, New Zealand

http://dx.doi.org/10.1016/j.jtbi.2011.07.006
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1016/j.jcp.2003.08.010

	Introduction
	Block diagonal Jacobian direct solver
	Cerebrovascular autoregulation model
	Discussion and future work
	References

