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High dimensional wavelet smoothing
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Abstract

A fundamental issue in Data Mining is the development of algo-
rithms to extract some useful information from very large databases.
One important technique is to estimate a smooth surface approximat-
ing the data. However, the number of observations can be of the order
of millions and there may be hundreds of variables recorded so one has
to deal with the so-called “curse of dimensionality”. The algorithmic
complexity of this process is of the orderN3d−2 whereN is the number
of grid points in each dimension and d is the number of dimensions.
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We propose a method for approximating a high dimensional sur-
face by computing a projection onto multiresolution spaces of low
density and we demonstrate that the algorithmic complexity of the
multiresolution method is proportional to ((logN)d−1N)3—a substan-
tial reduction in computational work. In addition, we show that the
approximation error is proportional to d2J2−2J , the proportionality
constant depending on the smoothness of the computed surface.
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1 Data mining

Due to the availability of cheap disk space and automatic data collection
mechanisms huge data collections in the terabyte range are becoming com-
mon both in business and science. Examples include the customer data bases
of health and car insurance companies, banks, business transactions of retail-
ers, taxation office genome data bases and remote sensing data. In business,
these data bases have been used to assist in the daily transactions. However,
it is seen that the data may also contain a wealth of information about the
behaviour of the customers which traditionally has been gathered indepen-
dently with expensive market surveys. Data mining attempts at getting the
benefits out of these large data collections [1].

The algorithms applied in data mining have to deal with two major chal-
lenges: First they have to be able to handle data in the Terabyte range and
have to be able to scale from smaller to larger data sizes when more data
becomes available. Second, they also need to deal with complex data as each
record may contain as many as 100 attributes or features.

An important function is to be able to predict the likelihood of a car
insurance customer making a claim, a business customer to purchase a prod-
uct or a resident to commit taxation fraud. This is typically described by a
function

y = u(x1, . . . , xd)

where the xi are d attributes describing the customer and y the value to be
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estimated for this customer. This model u is estimated based on the given
customer data base. In the following it will be assumed that all the attributes
or features xi used are real values and we set x = (x1, . . . , xd)

T . In many
applications the response variable is known to depend in a smooth way on the
values of the features. Thus smoothing is a natural candidatefor such data
mining problems. However, it turns out that the systems of equations which
arise from smoothing for data mining applications are very hard to solve
due to very large number of unknowns and the denseness of the systems. A
general smoothing spline is defined as the minimiser of a quadratic functional
of the form

Jα(f) =
n∑

i=1

(f(x(i)) − y(i))2 + α(Tf, Tf)

where n is the number of data points, T is a differential operator which maps
real functions of d variables into real vector-valued functions of d variables.
Examples include the gradient, Hessian etc. By (·, ·) we denote the usual
scalar product for the vector-valued functions. The smoothing parameter α
controls the trade-off between smoothness and fit.

The functions are chosen from some function space which might be defined
by constraints.

As an example consider thin plate splines. They are the solution of a
quadratic minimisation problem which trades the goodness of fit for smooth-
ness. It is well known that thin plate splines can be written as the linear
combination of radial basis functions [4]. The determination of the coeffi-
cients of this linear combination requires the solution of a dense linear system
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of equations the size of which equals the number of data points. The ma-
trix elements depend on the distances between the data points which can be
computed in O(d) time and thus the curse of dimension has been overcome.
However, there are O(n2) matrix elements. Thus just the computation of all
the matrix elements is a non-scalable process with complexity O(n2). Tech-
niques to solve these equations tend to work well for 2 dimensional problems
but not for very high dimensional ones.

In a different attempt, finite elements were suggested to solve the under-
lying variational problem approximately [5]. This leads to a penalised least
squares fit for the finite elements. For a given finite element space the data
is only required in the assembly of the matrix and every data point needs
to be read once only. Thus this method is scalable. However, it is not good
in dealing with high dimensional data as it is based on tensor product ap-
proximations. It was seen in practical tests that even if the grid points per
dimension is moderate (32) it is infeasible to consider higher than 4 dimen-
sional data.

In the following we will develop a new technique based on multiresolution
analysis and demonstrate that the algorithmic complexity can be greatly
reduced for high dimensional problems.
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2 Multiresolution analysis

A natural framework for wavelet theory is multiresolution analysis (MRA)
which is a mathematical construction that characterises wavelets in a general
way. The goal of MRA is to express an arbitrary function f ∈ L2(R) at
various levels of detail. MRA is characterised by the following axioms:

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R) (a)

∞⋃
j=−∞

Vj = L2(R) (b)

{φ(x− k)}k∈Z is a Riesz basis for V0 (c)

f ∈ Vj ⇔ f(2·) ∈ Vj+1 (d)

(1)

This describes a sequence of nested approximation spaces Vj in L2(R)
such that the closure of their union equals L2(R). Projections of a function
f ∈ L2(R) onto Vj are approximations to f which converge to f as j → ∞.
Furthermore, the space V0 has a Riesz basis consisting of integral translations
of a certain function φ. Finally, the spaces are related by the requirement
that a function f moves from Vj to Vj+1 when rescaled by 2. It is usually
required that φ has unit area [3, p.175], i.e.∫ ∞

−∞
φ(x) dx = 1 (2)
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It follows from (1) that the set of functions

{φj,l(x) = φ(2jx− l)}l∈Z is a Riesz basis for Vj

Given the nested subspaces in (1), define the subspace Wj such that

Vj+1 = Vj ⊕Wj (3)

Consider now two spaces VJ0 and VJ , where J and J0 are arbitrarily cho-
sen resolutions with J ≥ J0. Oftentimes one takes J0 = 0. Applying (3)
recursively we find that

VJ = VJ0 ⊕
 J−1⊕

j=J0

Wj

 (4)

Thus any function in VJ can be expressed as a linear combination of
functions in VJ0 and Wj , j = J0, J0 + 1, . . . , J − 1; hence it can be analysed
separately at different scales. Multiresolution analysis has received its name
from this separation of scales. It is shown in [3, p.135] that there exists a
function ψ(x) such that

{ψj,l(x) = ψ(2jx− k)}k∈Z is a Riesz basis for Wj

We call φ the basic scaling function and ψ the basic wavelet1 and they
are the two fundamental functions of the theory.

1In the literature ψ is often referred to as the mother wavelet.
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In order to simplify the notation in the following we will rewrite (4) as

VJ =
J⊕

j=J0

Sj, Sj =

{
VJ0 j = J0

Wj−1 j > J0
(5)

2.1 Multiresolution in high dimensions

When moving from one dimensional wavelet decomposition to the d-dimensional
decomposition, one may choose the tensor product of the univariate space.
In particular, the tensor product spaces

Uj =
d⊗

s=1

Vj , j ∈ Z

are commonly used. The sequence Uj , j ∈ Z form a multiresolution of
L2(R

d). The density of this space is 2jd. This is 2(j−1)d times more than
what was required in the 1D case and this is an appearance of the curse of
dimensionality. For large d this type of approximation is not computationally
feasible.

Using the MRA decomposition given in (5) we obtain

UJ =
d⊗

s=1

J⊕
js=J0

Sjs =
J⊕

j1,...,jd=J0

d⊗
s=1

Sjs (6)
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where we assume that the scales J0 and J are the same in all dimensions.
The density of UJ is still 2Jd but if the function f to be approximated is
sufficiently smooth, the projection onto the tensor products

⊗d
s=1 Sjs where

some of the js are sufficiently large will be very small. In fact, it can be
shown [11] that for a sufficiently smooth function f we have the following
bound on any of the d-dimensional projections:∥∥∥PSj1

⊗···⊗Sjd
f

∥∥∥
2
≤ C(f, r)2−r

∑d

s=1
js (7)

where r depends on the regularity of the actual wavelet basis - the so-called
number of vanishing moments. See e.g. [2], [10], [3] or [8]. Figure 1 shows
the norms of the projections onto Sj1 ⊗ Sj2 for js = J0, . . . , J , s = 1, 2. It
is seen that the projections where j1 + j2 > J + J0 contribute little to the
reconstruction of f . In fact, it can be verified that the convergence rates are
exactly as predicted by Equation (7).

This suggests to remove all basis functions in
⊗d

s=1 Sjs where
∑d

s js >
J + (d − 1)J0 from subspace UJ to form a new space TJ . Thus, after com-
pressions, the basis functions in this subspace are inactive. This is data
independent or a-priori compression as opposed to the more common data
dependent compression where wavelet coefficients are discarded based on
their magnitude. See e.g. [10].
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Figure 1: Norms of projections onto detail spaces. The example function
is u(x1, x2) = e−(x2

1+x2
2) with (x1, x2) ∈ [0, 1] × [0, 1] and r = 2.
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The truncated subspace TJ of UJ is defined as

TJ =
⊕

J0≤j1,...,jd≤J

j1+···+jd≤J+(d−1)J0

d⊗
s=1

Sjs (8)

and it can be shown ([11]) that the density of VJ is Jd−12J .

The left graph in Figure 2 shows the spaces that constitute VJ with J =
4, J0 = 0, d = 2 and the right shows the relative sizes of the spaces involved
(for arbitrary J and J0 = J − 4, d = 2).

2.2 Choosing a suitable basis

In the application at hand, piecewise linear “hat” functions are used in the
Finite Element Approximation of u [5]. Therefore it is natural to choose
these elements for the scaling functions φJ,l(x) and then define the wavelets
ψj,l(x) accordingly. More specifically we have

φ(x) =


1 + x x ∈ [−1, 0]
1 − x x ∈ [0, 1]
0 otherwise

, ψ(x) = φ(2x− 1)

and the so-called refinement equations

φj−1,l = 1
2
φj,2l+1 + φj,2l + 1

2
φj,2l−1

ψj−1,l = φj,2l+1
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S1 ⊗ S3S0 ⊗ S3

S0 ⊗ S4

S1 ⊗ S2 S2 ⊗ S2S0 ⊗ S2

S3 ⊗ S1S1 ⊗ S1 S2 ⊗ S1S0 ⊗ S1
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Figure 2: The spaces constituting T4 in 2d (left) and the blocks of the
wavelet transformed function u necessary to represent PT4u (right).
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that generate all the necessary functions. This is an example of a bi-orthogonal
wavelet basis. Figure 3 shows the one used in this paper.

Using the refinement equations one arrives at the recursion

cJ,l = uJ,l = u(l/2J), l = 0, . . . , 2J

cj−1,l = cj,2l, j ≤ J, l = 0, . . . , 2j−1

dj−1,l = cj,2l+1 − (cj,2l + cj,2l+2)/2, j ≤ J, l = 0, . . . , 2j−1 − 1

This is a linear transformation so we will denote it by its matrix represen-
tation W , i.e. we have an invertible mapping from coefficients at the finest
level u to the vector of wavelet coefficients denoted by d: d = Wu .

2.3 High dimensional multiresolution basis

We define the multi dimensional basis as

φj,l =
d⊕

s=1

φjs,ls

σj,l =
d⊕

s=1

σjs,ls, σj,l =

{
φJ0,l j = J0

ψj−1,l j > J0

and a high dimensional expansion will then have the form

u =
2J∑

l1,...,ld=0

uJ ,lφJ ,l, uJ ,l = u(l1/2
J , . . . , ld/2

J)



2 Multiresolution analysis C1047

Finite element basis: VJ = span{φJ;l}

φ4,l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514 16

Multiresolution basis: Wj = span{ψj;l}

ψ2,l

ψ1,l

ψ3,l

ψ0,l

φ0,l

2 30 1 4 5 6 7

0 1 2 3

0 1

0

0 1

Figure 3: An example of the chosen bi-orthogonal wavelet basis.
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u =
J∑

j1,...,jd=J0

θ(js)∑
ls=0

dj,lσj,l, θ(j) =

{
2J0 j = J0

2j−1 j > J0

Similar to the matrix formulation of the 1D transform we have the fast
high dimensional wavelet transform: u→ d which we represent by the
matrix W .

3 The wavelet smoothing technique

Given the data set: (x(i), y(i)), i = 1, . . . , n x(i) ∈ Rd, y(i) ∈ R we wish
to minimise the functional

Jα(u) = ‖u(x) − y‖2 + α
∫
Rd

|Lu(x)|2 dx

Using a Galerkin projection we obtain the Matrix formulation

Jα(u) = ‖Mu− y‖2 + αLu

which in turn is equivalent to the linear system

(
MTM + αL

)
u = MTy
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This system can be expressed in our multidimensional wavelet basis as follows(
M̂

T
M̂ + αL̂

)
d = M̂

T
y

M̂ = MW−1

L̂ = (W−1)TLW−1

d = Wu

Note that this formulation is used only to describe the process. For
computational efficiency these matrices must be derived directly using the
Galerkin method with the wavelet basis.

3.1 Reducing the computational work

The system for computing all wavelet coefficients has the form

Ad = v

However the coefficients needed to approximate the compressed u is given
by

I =

{
(j, l) :

d∑
s=1

js ≤ J + (d− 1)J0

}
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Hence we can express the reduced system by discarding equations for
inactive coefficients as follows

AI,IdI = vI

PTJ
u ≈W−1d

Figure 4 shows the coefficient matrix in terms of scaling functions all at
scale J , the uncompressed wavelet representation, the wavelet representation
with inactive coefficients set to zero, and finally the compressed matrix.

4 Complexity and numerical results

Figure 5 shows the number of non zeros of the full system and the compressed
system respectively and Figure 6 shows the actual number of flops involved
in the two representations. Figure 7 shows a 2D example on a real data set
consisting of 735700 observations of a magnetic field.

5 Conclusion and further work

Our work has indicated that high dimensional wavelet smoothing can lead
to
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Figure 4: Coefficient matrix: M̂
T
M̂ + αL̂ (d = 4, J = 2)
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Uncompressed: = (3 × 2J − 2)d−1

Compressed: = M2, M = Jd−12J

Figure 5: Nonzeros, J = 3
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Uncompressed: ≈ B22Jd, B = 3 × 2J(d−1)

Compressed: = M3, M = Jd−12J

Figure 6: Floating point operations, J = 3
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Reference surface: 66049 vars

Compressed surface: 1793 vars

Figure 7: A real example on a 2D data set consisting of 735700 measure-
ments of a magnetic field. The two surfaces are very similar but the lower
one uses only a fraction of the coefficients used to represent the upper one.
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• Very large reduction of complexity for three dimensions and higher

• Good approximation of smooth functions

Our plans for the future is to

• Incorporate this technology for more complicated penalty terms (e.g.
in the in the TPSFEM data mining tool described in [5]).

• Apply to more real-world data mining problems

• Extend method to incorporate a-posteriori compression and automatic
detection of “events” of interest.
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