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On the inversion of sound channel data

M. R. Osborne∗

(Received 7 August 2000)

Abstract

If the velocity-depth profile in a deep ocean has a well defined min-
imum at finite depth then acoustic signals of high enough frequency
are trapped in an associated sound channel and propagate with rel-
atively little attenuation over large distances. An inverse problem
of determining the velocity-depth profile given sound channel obser-
vations is considered here. This is an inverse eigenvalue problem in
which the eigenvalue data (typically recorded as group velocity data)
depends on the frequency as an auxiliary parameter, and the inversion
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has the possibility of being rescued from the characteristic extreme
ill-conditioning of the inverse eigenvalue problem by sampling in the
frequency domain. However, the inversion appears to have the un-
usual characteristic that if a p parameter model is to be determined
then it is desirable to have sequences of observations on each of at
least p propagating modes.
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1 Introduction

The Helmholtz equation governing the propagation of sound in a deep ocean
in which the velocity of propagation c (z) is a function of the depth z only



1 Introduction C1099

can be separated in cylindrical polar coordinates (r, z) giving the system

∇2
rφ (r) + k2φ (r) = 0, (1)

d2ψ (z)

dz2
+

{
ω2

c (z)2 − k2

}
ψ (z) = 0. (2)

Here ω is the frequency, the separation constant k2 corresponds to wave
number, and the pressure release condition at the ocean surface gives a
top boundary condition ψ (0) = 0. The equation governing the radial be-
haviour can be solved explicitly in terms of Bessel functions and it is the
z-dependence equation which is of principal interest. Qualitative features of
the dependence of c (z) on z are illustrated in Figure 1.

The equation of this curve is

c(z) = 4500
(
1 + 2

(
η + e−η − 1

))
+ 500e

− 4z
z1 ,

where η = (z − z1) /zB, z1 = 1000, zB = 12500. Here zB is the bottom
depth, and z1 is a good approximation to the sound velocity minimum which
determines the axis of the sound channel. Depths are in feet and speeds in
feet per second.

If the bottom boundary condition in the deep ocean is approximated by
an outgoing wave condition at z = ∞ then the Green’s function with source
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Figure 1: Schematic velocity/depth profile.
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at (0, zp) has the form

G (r, z, zp, ω) = − i

4

∑
j

H
(2)
0 (kjr)

ψj (z)ψj (zp)∫∞
0
ψj (z)2 dz

− i

4

∫ ∞

0

H
(2)
0 (kr)ψ (z)ψ (zp) dσ (λ) . (3)

Terms in the sum correspond to the discrete spectrum of the depth depen-
dence equation and are characterised by exponential decay for large z. This
makes them relatively independent of the precise form of the bottom bound-
ary condition. These modes describe the signals trapped in the sound chan-
nel. The weight σ associated with the continuous spectrum contribution can
be computed if the asymptotic form of ψ for large z is known [2]. The vari-
able of integration is given by λ = ω2

c(∞)2
−k2. If the sound velocity is assumed

to have a single minimum at z = z∗ and then to increase monotonically to
z = ∞ as in Figure 1, then the requirement for an exponential decay means
that modes in the discrete spectrum must lie in the range

ω2

c (∞)2
< k2 <

ω2

c (z∗)2 .

The characteristic exponential decay of the trapped modes implies cylindrical
scattering with a characteristic dispersion of the wavefront and falling off
in intensity of O (r−1). This contrasts with spherical scattering which is

nondispersive, and gives an intensity fall-off of O

([√
r2 + (z − zp)

2

]−2
)

. A
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connection between the continuous spectrum in (3) and an outgoing spherical
wave has been shown [3]. Ignoring this term and using the asymptotic form
for the Hankel function gives the leading term in the response to the point
source for large r as

P ∼ −i
8π

∑
j

√
2

πkjr

∫ +∞

−∞
g (ω)

ψj (z)ψj (zp)∫∞
0
ψj (z)2 dz

e−i{π
4
+kj−ωt}dω,

where g (ω) is the Fourier transform of the source. The standard technique
for estimating these integrals is the method of stationary phase. This marks
as important points satisfying the constructive interference condition

d

dω
{ωt− kjr} = 0.

This leads to the familiar condition for dispersive wave propagation that the
component of the disturbance associated with mode kj travels according to
the rule

r =
dω

dkj
t = cjgt

where cjg is the group velocity of the j’th mode. Observation of the group
velocities as functions of ω provides the basic data for the inverse problem.

The asymptotic expansion is simplest if
dcjg
dω

6= 0. However, if it vanishes then
further constructive interference is possible. Plots of phase and group velocity
for the fundamental mode for deep boundary conditions ψ (zB) = 0(dotted
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Figure 2: First mode phase and group velocities
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curve) and dψ
dz

(zB) = 0 (continuous curve) as a function of frequency are
given in Figure 2.

Independence of the bottom boundary condition is apparent for the group
velocity only for ω > 10. Here the phase velocity is given by cjp = ω/kj, while
the group velocity is given by

cjg =

∫ zB

0

ψj (z)2 dz/

{
cjp

∫ zB

0

ψj (z)2

c (z)2 dz

}
. (4)

At higher frequencies the phase and group velocities are close. This follows
because the propagating modes are concentrated about the sound channel
axis as ω increases. This is illustrated for the fundamental mode in Figure 3.
The frequencies plotted are 5(10)65 cycles per second.

2 The inverse problem

There appears to be a distinct similarity between the problem considered
here and the classic inverse problem of finding the potential function in a
Sturm-Liouville problem given the eigenvalues, but this is misleading:

1. The standard inverse eigenvalue problem is notoriously ill-conditioned
so that very accurate data is needed in order to be able to extract
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Figure 3: Concentration of first mode with increasing frequency.
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any information. The source of the problem is the ill-conditioning of a
matrix whose elements are the squares of the eigenvector components.

2. The eigenvalues of (2) give phase velocities. However, it is the group
velocities which are the quantities which can be measured. There is no
difficulty in principle in using these in the estimation procedure; but
computational experience does not indicate any advantage [5].

3. Useful information is available at low frequencies when there are at
most a small number of propagating modes.

4. The usual approach does not make use of the frequency dependence.

A key step to improving the inversion could be the use of group veloc-
ity data collected as a function of frequency. Let c (α∗, z) be a parametric
model for the velocity depth dependence, α∗ be the true parameter value,
and group velocity observations, which depend on c (α∗, z) through the dif-
ferential equation, be given by

vis = csg (α∗, ωsi ) + εsi , i = 1, 2, · · · , ms,

for mode s, 1 ≤ s ≤ nm, for frequency samples

ωsmin ≤ ωs1 < ωs2 < · · · < ωsms
≤ ωsmax.

The εsi are independent random errors. The approach considered for the
inversion is to estimate α∗ by minimising F (α) : Rp → R with respect to α,
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where

F (α) =
nm∑
s=1

ms∑
i=1

(
vsi − csg (α,ωsi )

)2
,

using the Gauss-Newton algorithm. Hypothesise that the number of obser-
vations is able to increase without bound and satisfies the conditions:

m =

nm∑
s=1

ms, θs = lim
m→∞

ms

m
> 0.

For this to be possible there must a defined sampling regime in place for each
mode. Here it is assumed that each sampling regime is associated with a
limiting weight ρs (ωs). The Gauss-Newton algorithm computes a correction
to the parameter estimate α by

δα = −{E (∇2
αF
)}−1 ∇αF

T .

It is required that the limiting Hessian estimate, which is given by

lim
m→∞

1

m
E (∇2

αF
)
ij

=
nm∑
s=1

θs

∫
R(ωs)

∂csg
∂αj

∂csg
∂αk

dρs (ω) , 1 ≤ j, k ≤ p,

be positive definite, and that it is a good estimate in the sense that the law
of large numbers holds in the form

lim
ms

1

ms

ms∑
l=1

εsl
∂2csg (α∗,ωsi )

∂αj∂αk
→ 0, s = 1, 2, · · · , nm.
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In this case it is known that the iteration is asymptotically second order and
possesses excellent scaling and stability properties [4].

Some insight into the chance of satisfying these conditions can be obtained
by considering the artificial model problem in which

q (z) =

p∑
i=1

αiqi (z)

is to be estimated given observations Λj

(
ωji
)

+ εji , i = 1, 2, · · · , mj, on the
system governed by the eigenvalue problem

d2ψj
dz2

+ (λj − ωq (z))ψj = 0

subject to boundary conditions ψj (0) = ψj (zB) = 0. Here
∂λj

∂αi
(ω) is given

by

∂λj
∂αi

(ω) = ω

∫ zB

0
qi (z)ψj (z, ω)2 dz∫ zB

0
ψj (z, ω)2 dz

.

The Gauss-Newton correction solves the linear least squares problem

min
δα

‖r‖2
2 ; r = Λ − λ (ω, α) −∇αλ (ω, α) δα.
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The contribution of each mode to the design matrix ∇αλ (ω, α) involves rows
like 

 · · · · · · · · ·
∂λj

∂α1
(ωs) · · · ∂λj

∂αp
(ωs)

· · · · · · · · ·


 =




· · · · · · · · ·
· · · ωs

R zB
0 qi(z)ψj(z,ωs)

2dz
R zB
0 ψj(z,ω)2dz

· · ·
· · · · · · · · ·


 .

This will contain a rank (p) submatrix provided there exists a set of points
Ω = {ω1 < ω2 < · · · < ωp} such that

max
ωs∈Ω

∣∣∣∣
∫ zB

0

q (z)ψj (z, ωs)
2 dz

∣∣∣∣ > 0, ∀q (z) ∈ span {qi(z), i = 1, 2, · · · , p} .

If ψj is independent of ω then this sufficient condition cannot be satisfied
for a single mode if p > 1. Formally the condition can be satisfied if there
are observations on at least as many modes as there are parameters in case
p > 1. Note that although the squares of the eigenvectors reappear, it is now
the interaction between these and the basis functions qi (z) , i = 1, 2, · · · , p
that is important. In practice ψj varies slowly with ω (Figure 3) so this
argument only holds to some approximation. However, it does suggest that
an inversion based on a single mode could be badly conditioned for p > 1,
and that observations on at least p propagating modes would be needed to
estimate satisfactorily a p parameter model.

Something similar occurs in the inversion problem which uses the group
velocity data. In this case the requirement is for the matrix with elements
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∂cjg
∂αi

(ωs) to have full rank p. The group velocity is given by

cg =
1

cpf (α)
, f (α) =

∫ zB

0
ψ(z,α)2

c(z,α)2
dz∫ zB

0
ψ (z, α)2 dz

,

so that

∂cg
∂αi

= −2cg

{
∂cp
∂αi

cp
+

∂f
∂αi

f

}
= cg

∫ zB

0

K (z, α)
∂c

∂αi
(z, α) dz.

Here the calculation of K (z, α) involves not only ∂k
∂α

but also ∂ψ
∂α

as a con-
sequence of the definition of f (α). The dependence on ∂c

∂αi
follows from the

variational equation

d2

dz2

∂ψ

∂αi
+

(
ω2

c (z, α)2 − k2

)
∂ψ

∂αi
= 2

(
ω2

c (z, α)3

∂c

∂αi
(z, α) + k

∂k

∂αi

)
ψ, (5)

and the condition for solvability

k
∂k

∂αi
= −

∫ zB

0
ω2

c(z,α)3
∂c
∂αi

(z, α)ψ (z, α)2 dz∫ zB

0
ψ (z, α)2 dz

.

Hence the argument for the idealised problem can be followed through. Here
it is necessary to avoid the possibility of a function in the span of the set{
∂cjg
∂αi
, j = 1, 2, · · · , mj

}
being orthogonal to Kj (z, α) , j = 1, 2, · · · , nm.
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3 Solution of the variational equation

Because k2
j is an eigenvalue of (2), the right hand side of (5) must satisfy a

compatibility condition (this determines
∂kj

∂αi
), and the solution is not unique.

Thus an additional condition must be added to normalise it, and the obvious
condition is ∫ zB

0

ψ
∂ψ

∂α
dz = 0 (6)

which fits neatly with the scaling condition
∫ zB

0
ψ (z, α)2 dz = 1 holding for all

α. However, the obvious discretisation of this condition leads to an algebraic
condition of the form

hψTD
∂ψ

∂α
= 0,

where the vector components are values of the corresponding differential
equation quantities, and D is a diagonal matrix summarising the quadra-
ture. This condition makes it hard to preserve sparsity in guaranteed stable
methods for solving the discretised extended system. A better plan is to
introduce a new variable

w (z) =

∫ z

0

ψ (t)
∂ψ

∂α
(t) dt.

This gives us another differential equation

dw

dz
− ψ (z)

∂ψ

∂α
(z) = 0, (7)
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and another boundary condition

w (0) = 0.

The equivalent extended system (5) and (7) can be written as a first-order
system

du

dz
− v = 0,

dv

dz
+

{
ω2

c (z)2 − k2

}
u = 2

(
ω2

c (z, α)3

∂c

∂αi
(z, α) + k

∂k

∂αi

)
ψ,

dw

dz
− ψ (z) u = 0.

The corresponding boundary conditions are

u (0) = u (zB) = w (0) = 0.

In this form the extended system can be discretised compactly. A discussion
of the numerical solution of the eigenvalue problem (5), and the computa-
tion of the cut-off frequencies of the propagating modes can be found in the
report [1].
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