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Numerical techniques for simulating
groundwater flow in the presence of

temperature gradients
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Abstract

In this paper we are concerned with situations when vertical tem-
perature gradients in a groundwater aquifer exceed a value determined
by the critical Rayleigh number for the onset of thermal convection.
In the presence of such temperature gradients, the groundwater flow
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exists in the form of convective circulation. The variation of water
density triggers thermal convection and the variation of dynamic vis-
cosity enhances flow within convective cells. We discuss the mathe-
matical and numerical framework of convective groundwater flow and
examine the effects of anisotropic rock permeability and large-scale
inhomogeneities on the convective motion.
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1 Introduction

In an aquifer heated from below warmer and lighter water layers are overlaid
by cooler and denser ones. When the vertical temperature difference is small,
this configuration remains stable due to water viscosity. At some temperature
difference, the buoyancy forces overcome stabilising effects of the viscous
forces and instability appears in the form of a convective motion. The lighter
fluid flows up driven by buoyancy, and the denser fluid moves down driven
by gravity. The groundwater flow forms large-scale rolls or convective cells.
Both density and viscosity variations with temperature are important for
the formation of the convective cells: density variation triggers the onset of
convection and viscosity variation enhances the flow within the cells.

Because of its practical importance, natural convection in porous me-
dia has attracted considerable interest in scientific literature. Now it is an
established area of applied mathematics with a well developed theoretical
foundation and state-of-the-art computer software available [3, 14, 18, 5].

The early works in this area were devoted to determining quantitative cri-
teria for the onset of thermal convection from linearised governing equations.
The critical Rayleigh number was first calculated in [7] for a homogeneous
porous medium saturated by a single-phase fluid. This work was further ad-
vanced in [10, 11, 12, 13] through incorporating more realistic features such as
inhomogeneity and anisotropy of a porous medium. Linear stability problems
of two-phase liquid-vapour thermal convection in porous media were consid-
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ered by numerous authors, mainly in works related to geothermal reservoir
modelling, cf. [1, 19, 20, 9, 15]. Convection induced by concentration gradi-
ents of dissolved salts was first investigated in [21]. Although the latter is of
considerable interest to groundwater aquifer modelling, we leave this type of
natural convection beyond the scope of this paper. A comprehensive review
of works on natural convection in porous media is given in [3, 14].

2 The Rayleigh Number

The Rayleigh number is the main non-dimensional number for thermal con-
vection problems. It includes characteristics of a porous medium, thermody-
namic properties of a saturated fluid and a vertical temperature difference.
In simplified cases, the critical Rayleigh number for the onset of convection
can be calculated from linearised governing equations. In more complex cases
laboratory or computer experiments are required.

In a homogeneous isotropic porous medium saturated by a single-phase
fluid the Rayleigh number is defined as

Ra =
ρgβkH∆T

µα
, (1)

where ρ and µ are fluid density and dynamic viscosity respectively, g is
gravitational acceleration, β is thermal expansion coefficient of the fluid, k
is permeability, α is thermal diffusivity of the saturated porous medium,
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and ∆T is the temperature difference over a distance H . In equation (1) H
and ∆T are positive in the direction of g. A critical Rayleigh number for a
homogeneous isotropic porous medium bounded from above and below is [7]:

Racr = 4π2 ≈ 39.48. (2)

For Ra < Racr the heat transfer in the porous medium occurs solely by
thermal conduction and the conduction state remains stable. When

Ra > Racr, (3)

instability appears in the form of circulatory flows.

Often a groundwater aquifer consists of several layers of different perme-
ability and should not be considered as homogeneous and isotropic. Non-
dimensional criteria for the onset of thermal convection in layered systems
have been developed in [10, 11, 13]. In these works the Rayleigh number
is calculated using permeability and thermal properties of the bottom layer
and the temperature difference and thickness of the whole system. In the
case of a stratified system which consists of a large number of thin layers, the
Rayleigh number is based on the effective vertical permeability and conduc-
tivity calculated using an averaging procedure [12]. The multilayered struc-
ture markedly affects the critical Rayleigh number. For a three-layer system
the values of the critical Rayleigh number are increasing with decreasing
permeability of the middle layer [10]. In [10] the middle layer occupied 20%
of the total aquifer thickness and had a permeability k1 different to that of
the top and bottom layers. (The top and bottom layers had equal perme-
ability k2.) The calculated values of Racr were 92.14, 188.08 and 194.23 for
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k1/k2 = 0.1, 0.01 and 0.001 respectively. Even for moderate geothermal gra-
dients found in Australia, Rayleigh numbers may exceed these critical values,
so that inequality (3) will be satisfied [16].

It is not possible to obtain critical Rayleigh numbers for all structural
configurations of soils found in real systems. However, as a preliminary step
it is useful to calculate the Rayleigh number given by equation (1). For large-
scale heterogeneous systems the Rayleigh number at each grid point can be
conveniently evaluated using the gis tools. For instance, with the help of
ArcView Spatial Analyst, corresponding grids of the aquifer thickness (H),
geothermal gradient (∆T ) and vertical permeability (k) can be multiplied
in accordance with equation (1), and a new grid coverage for Ra can be
obtained. After that, inequality (3) can be applied to identify regions where
Ra exceeds the critical value for a homogeneous isotropic porous medium
given by equation (2). For complex real field situations further numerical
simulations of the regional flows will be needed.

When choosing a numerical model, it is important to check that the cor-
responding mathematical model includes coupling between heat and mass
transfer processes and that there is a dependence of water thermodynamic
properties on temperature. Isothermal flow models are no longer applicable
to convective flows. Since convective flows have a significant vertical compo-
nent, numerical simulations must be 3D or 2D with the vertical coordinate
included. It is not possible to describe the convective motion by horizontal
flow models (e.g. via introducing leakage terms).



3 A Mathematical Model C1120

3 A Mathematical Model

The following system of conservation equations describes non-isothermal flow
in a groundwater aquifer [14].

Continuity equation:

∂

∂t
(φρ) + ∇ · (ρV) = W, (4)

Energy equation:

[(1 − φ)ρsCs + φρCp]
∂T

∂t
+ ρlCpV · ∇T = ∇ · (λ∇T ), (5)

Darcy’s law:

V = −k

µ
(∇p − ρgez). (6)

Here φ is porosity, ρs is solid phase density, Cp is specific heat of water at
constant pressure, V is Darcy velocity vector, ez is the unit vector in the
direction of the gravity force, Cs and λ are specific heat and thermal conduc-
tivity of the saturated porous medium respectively, and W is the volumetric
source term. For the mathematical model to be complete, it is necessary to
add to equations (4–6) constitutive relationships describing thermodynamic
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properties of solid and liquid phases as functions of temperature and pres-
sure, hydrodynamic and thermal boundary conditions, and initial conditions
for time-dependent problems.

Note that the concept of potentiometric head is no longer applicable to
non-isothermal flows, and equations (4–6) involve pressure p and temperature
T as dependent variables. Equation (5) is known as the generalised Darcy’s
law equation. It is used to describe non-isothermal and variable density
flows in porous media when the Reynolds number is less than 10 [2, 14].
The numerical program modflow [8] solves the Darcy’s law equation in the
following form:

V = −K∇h, (7)

where K = kρg/µ is hydraulic conductivity and h = p/ρg is potentiometric
head. Only in a very particular case where ρ = const, equation (7) is identical
to equation (5). Therefore, modflow cannot be used to simulate convective
groundwater flow. The variable density flow modification of modflow [6]
is not applicable either, since it ignores coupling between heat and mass
transfer processes.

There is an extra level of complexity associated with incorporating ther-
mal convection in groundwater models. Indeed, one has to solve two non-
linear partial differential equations in every grid point which could be compu-
tationally expensive, especially on large grids. However, thermal convection
cannot be neglected when determining flow directions and the aquifer re-
sponse to groundwater extraction as we illustrate in our numerical examples.
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4 Numerical Examples

We considered a rectangular aquifer cross-section 625 m by 575 m bounded
from above and below by impermeable surfaces at 25 ≥ z ≥ 0 and −575 ≥
z ≥ −600 (Figure 1). There were 625 grid cells, 25 m by 25 m each. Constant
temperatures T = 36◦C and T = 60◦C were prescribed at the upper and
lower boundaries respectively. This corresponds to a geothermal gradient of
41.7 K/1000 m which is slightly above the world average value of 30 K/1000 m
as given in [4]. Rock thermal conductivity was 3.2 W/m K, rock density was
2650 kg/m3, heat capacity was 1000 J/kg K and porosity was 0.20.

In our numerical simulations the numerical package tough2 was used [17].
tough2 is a finite-difference numerical program that can handle coupled
2D and 3D groundwater and heat flows in porous and fractured media. It
solves the continuity and energy equations (4–5) together with the generalised
Darcy’s law (6) and includes numerical subroutines for calculating groundwa-
ter density and dynamic viscosity as functions of temperature. The latter is
particularly important when non-isothermal groundwater flow is considered.
(Note that modflow [8] does not solve the energy equation and assumes ρ
and µ to be constant.)

In the first series of computer experiments we examined the effects of
anisotropic permeability. We assumed the aquifer horizontal permeability
kx to be larger than its vertical permeability kz. Figure 1 shows calcu-
lated groundwater velocity vectors for kx = 1 d and kz = 0.5 d. (Here
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Figure 1: Groundwater velocity vectors for kx = 1 d and kz = 0.5 d.
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Figure 2: Groundwater velocity vectors for kx = 1 d and kz = 0.2 d.
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1 d = 1 darcy = 10−12 m2.) The magnitudes of the velocity vectors were
enlarged to make the relative acceleration of groundwater flow visible. The
observed groundwater velocities were of the order of 3× 10−8 m/s. A similar
flow pattern, but with smaller groundwater velocities of 1.2× 10−8 m/s, was
obtained for kz = 0.2 d (Figure 2). There was no convection when kz was as
low as 0.1 d.

In the next series of computer experiments we examined the effects of
large-scale inhomogeneities on thermal convection. We placed a 125 m thick
aquitard in the middle of the aquifer. There were two permeable windows at
the left and right side of the aquitard. The aquifer and window permeability
was 500 md and the aquitard permeability was 0.001 md. In studying thermal
convection in this system, only the vertical aquifer dimension is of interest.
A choice of the horizontal extent of the model could be of any reasonable
value with no or little effect on a flow pattern.

The calculated groundwater velocity vectors are shown in Figure 3. Again,
the magnitudes of the velocity vectors were enlarged to make them visible.
Groundwater ascended through the left window driven by buoyancy and de-
scended through the right window driven by gravity. The flow took a shape of
a clockwise rotating convective cell: in the top aquifer layer water percolated
from left to right and in the bottom aquifer layer the water movement was in
the opposite direction. Water moved faster through the windows and there
was no groundwater flow through the aquitard. The observed groundwater
velocities were of the order of 1.8 × 10−8 m/s.
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Figure 3: Groundwater velocity vectors.
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Groundwater velocities of 3×10−8 m/s and flow patterns similar to that of
Figure 3 were obtained in an aquifer separated by an aquitard with windows
when horizontal rock permeability was increased to 1 d.

Vertical temperature and pressure distributions for various x are shown
in Figure 4 and Figure 5 respectively. In Figure 4 the x-coordinate of the
vertical temperature profiles is increasing from right to left with x = 12.5,
162, 262, 362, 462 and 612.5 metres, so that the rightmost and leftmost ver-
tical temperature distributions correspond to x = 12.5 m (left window) and
x = 612.5 m (right window) respectively. There were significant temperature
variations in both horizontal and vertical directions. In contrast, vertical
pressure profiles for all six values of x coincided with the hydrostatic pres-
sure distribution (Figure 5). The latter indicated that the groundwater flow
was totally driven by heat.

Our numerical simulations have shown that only relatively large aquitard
thicknesses and very low window permeabilities acting together could stop
thermal convection. There was no convection in the aquifer separated by
a 125 m thick aquitard with kw = 0.1 d (ten times smaller than the aquifer
permeability). However, we still observed thermal convection at kw = 0.2 d.
We also observed the convective motion in the top and bottom aquifer layers
separated by a 25 m thick aquitard with no windows. The observed ground-
water flow formed two clock-wise rotating convective cells above and below
the aquitard. The groundwater velocities were of the order of 10−14 m/s.

In the above examples it is not possible to obtain physically realistic
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groundwater flow lines using isothermal models.

In the last example we considered a radial flow to a water bore in a
100 m thick aquifer. Mass flow rates were taken to be 0, 10, 20, 30, 40 and
50 kg/s. Water temperature in the aquifer was set to be 70◦C. There was
an adjusted cold water aquifer with water temperature T = 20◦C. Under
natural conditions there was no flow between two aquifers. When production
started, cold water entered the hot water aquifer and water temperature
of the latter decreased. This temperature decrease affected water dynamic
viscosity and density and, hence, hydraulic conductivity K. Figure 6 shows
hydraulic conductivity K versus time in a grid block at a distance of 500 m
from the water bore. Higher mass flow rates correspond to faster decays of
hydraulic conductivity.

Some isothermal models include the dependence of water thermodynamic
properties on temperature by calibrating hydraulic conductivity against mea-
surements. The values of hydraulic conductivity obtained in such a manner
inevitably reflect the temperature distribution existed at the time of mea-
surements. It is obvious that the obtained values may become outdated as
the real field conditions change with time. The above example illustrates ag-
ing of the isothermal model parameters. The aging is faster in regions with
large numbers of water bores where the extraction rates are high.
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Figure 4: Temperature versus depths for various x.
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Figure 5: Pressure versus depths for various x.
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5 Conclusions

Thermal convection occurs naturally in a groundwater aquifer. Even for mod-
erate geothermal gradients found in Australia, vertical temperature differ-
ences across aquifers may exceed a value determined by the critical Rayleigh
number for the onset of thermal convection. In the presence of such tem-
perature gradients, the groundwater flow exists in the form of large-scale
convective circulation. Temperature gradients in the vertical direction, not
horizontal pressure differences, become a major driving force for the ground-
water flow.

It is not possible to describe the convective motion by isothermal flow
models. The mathematical model of convective groundwater flow must in-
clude coupling between heat and mass transfer processes and the dependence
of groundwater thermodynamic properties on temperature. As the momen-
tum equation, the generalised Darcy’s law must be used. Since the convective
motion have a significant flow component in the vertical direction, 3D or 2D
models with the vertical coordinate included must be applied.

Anisotropic rock permeability and large-scale inhomogeneities found in
real systems affect thermal convection. Our numerical experiments have
shown that large horizontal permeability increases the flow, whereas low ver-
tical permeability and impermeable barriers reduce flow velocities. However,
only very low vertical permeability of less than 0.2 d and relatively thick im-
permeable barriers of more than 5% of the total aquifer thickness stop the
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convective motion altogether. In the presence of large-scale inhomogeneities,
the convective motion can form peculiar flow patterns. For instance, ground-
water can flow in the opposite directions in the same aquifer layer above and
below a dividing aquitard. It is not possible to simulate such a flow pattern
using isothermal models.

Incorporating thermal convection in groundwater models is important
for determining the flow directions and the aquifer response to groundwater
extraction. The groundwater extraction scenarios considered in this paper
have shown that at high extraction rates hydraulic conductivity may change
by almost a factor of 2 over a period of time of just 10 years. Transient
changes in hydraulic conductivity will inevitably affect the groundwater flow
directions and, therefore, must be accommodated into groundwater models.
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Figure 6: Hydraulic conductivity versus time.



References C1134

[2] J. Bear and A. Verruijt. Modelling Groundwater Flow and Pollution.
Kluwer Academic Publishers, 1987. C1121

[3] P. Cheng. Heat transfer in geothermal systems. Adv. Heat Transfer,
14:1–105, 1978. C1116, C1117

[4] M.A. Grant, I.G. Donaldson, and P.F. Bixley. Geothermal Reservoir
Engineering. Academic Press, 1982. C1122

[5] S. Finsterle and K. Pruess. Solving the estimation-identification
problem in two-phase flow modeling. Water Resour. Res., 31:913–924,
1995. C1116

[6] L.K. Kuiper A numerical procedure for the solution of the steady state
variable density groundwater flow equation. Water Resour. Res.,
19:234–240, 1983. C1121

[7] E.R. Lapwood. Convection of a fluid in a porous medium. Proc.
Cambridge Phil. Soc., 44:508–521, 1948. C1116, C1118

[8] M.G. McDonald and A. Harbaugh. A modular Three-Dimensional
Finite-Difference Ground-Water Flow Model. US Government Printing
Office, 1988. C1121, C1122

[9] M.J. McGuinness. Heat pipe stability in geothermal reservoirs. Geother.
Resour. Council Trans., 14:1301–1307, 1990. C1117



References C1135

[10] R. McKibbin and M.J. O’Sullivan. Onset of convection in a layered
porous medium heated from below. J. Fluid Mech., 96:375–393, 1980.
C1116, C1118, C1118, C1118

[11] R. McKibbin and M.J. O’Sullivan. Heat transfer in a layered porous
medium heated from below. J. Fluid Mech., 111:141–173, 1981. C1116,
C1118

[12] R. McKibbin and P.A. Tyvand. Anisotropic modelling of thermal
convection in multilayered porous media. J. Fluid Mech., 118:315–339,
1982. C1116, C1118

[13] R. McKibbin and P.A. Tyvand. Thermal convection in a porous
medium composed of alternating thick and thin layers. Int. J. Heat
Mass Transfer, 26:761–780, 1983. C1116, C1118

[14] D.A. Nield and A. Bejan. Convection in Porous Media.
Springer-Verlag, 1992. C1116, C1117, C1120, C1121

[15] I. Pestov. Stability of vapour-liquid counterflow in porous media. J.
Fluid Mech., 364:273–295, 1998. C1117

[16] I. Pestov. Modelling non-isothermal flows in porous media: a case
study using an example of the Great Artesian Basin, Australia. Proc.
Centre for Mathematics and its Applications (R. Melnik, S. Oliveira and
D. Stewart, eds.), 38:59–65, 2000. C1119



References C1136

[17] K. Pruess. TOUGH2 – A General-Purpose Numerical Simulator for
Multiphase Fluid and Heat Flow. LBNL Report LBL-29400, University
of California, 1991. C1122

[18] K. Pruess, C. Oldenburg, and G. Moridis. Overview of TOUGH2,
Version 2.0. Proc TOUGH Workshop’98, pages 307–315, Lawrence
Berkeley National Laboratory, 1998. C1116

[19] P.S. Ramesh and K.E. Torrance. Stability of boiling in porous media.
Int. J. Heat Mass Transfer, 33:1895–1908, 1990. C1117

[20] G. Schubert and J.M. Straus. Gravitational stability of water over
steam in vapor-dominated geothermal systems. J. Geophys. Res.,
85:6505–6512, 1980. C1117

[21] R.A. Wooding. The stability of a viscous liquid in a vertical tube
containing porous material. Proc. Roy. Soc. London Ser. A,
252:120–134, 1959. C1117


	Introduction
	The Rayleigh Number
	A Mathematical Model
	Numerical Examples
	Conclusions
	References

