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Vibration of thick plates using finite
strip-elements

J. Petrolito∗ B.W. Golley†
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Abstract

This paper develops a finite strip-element method for the vibration
analysis of thick plates. The method uses a combined polynomial and
trigonometric interpolation scheme that enables all boundary condi-
tions to be correctly treated. The global equations are derived in the
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usual manner of the finite element method, and natural frequencies of
vibration can be found by solving a linear eigenvalue problem.
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1 Introduction

The efficient analysis of plate structures is of fundamental importance in
many branches of engineering, and continues to be an area of active re-
search. While the governing differential equations for particular models of
plate analysis are well-established, it is generally not possible to obtain ana-
lytical solutions of the equations except for simple geometries. Hence, numer-
ical solutions are required for practical problems. By far the most popular
method in use for plate analysis is the finite element method [1]. Its strength
lies in its generality and its ability to easily deal with complex geometries
and loading conditions.

However, the full generality of the method is not required when the ge-
ometry of the problem is regular, as is frequently the case for many practical
structures, for example bridges and buildings. In such cases, the efficiency of
the analysis can be improved by adopting alternative approximation schemes
that explicitly account for the regularity of the structure. One technique that
is suitable in such cases is the finite strip method.

Finite strips have now been used for the analysis of plates for some thirty
years [2]. The method was initially developed for analysing thin rectangular
plates with two opposite edges simply supported [3]. In this case, the global
equations uncouple into a number of smaller systems of equations owing to
certain orthogonality relationships resulting from the chosen displacement
functions. This leads to a reduction in storage requirements for the global
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equations and an increase in computational efficiency when compared with
the finite element method. Later work enabled other boundary conditions to
be treated. However, in all other cases uncoupling of the equations does not
occur, and the method loses some of its efficiency. A more serious problem
is that the shape functions used in the finite strip method do not satisfy free
edge boundary conditions, which frequently arise in practice.

To overcome these problems, while retaining the basic features of the
finite strip method, the authors developed a method that combined the in-
terpolation schemes of finite elements and finite strips. This method, called
the finite strip-element method, has been used by the authors and their col-
leagues for a variety of problems, for example [4, 5, 6, 7]. A key advantage
of the finite strip-element method is that the method correctly treats all
boundary conditions.

In this paper, we extend the finite strip-element method to the dynamic
analysis of thick plate structures. The use of a thick plate theory allows a
wide range of plate structures to be analysed, and the theory is also applicable
to thin plate structures. By using combined polynomial and trigonometric
approximations, the formulation allows all boundary conditions to be handled
in a simple manner. Moreover, the formulation leads to positive definite
stiffness and mass matrices, and enables standard eigenvalue routines to be
used for calculating natural frequencies of vibration.
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2 Governing Equations

The influence of shear deformation is critical for thick plate problems, and
there are various theories available to account for this effect. The simplest
and most-used theory is Mindlin’s theory [8]. The theory is applicable to
both thick and thin plates, and it incorporates independent assumptions for
the transverse displacement w and normal rotations θx and θy (see Figure 1).
This allows C0 approximations to be used for these variables.

In contrast to thin plate theory, both bending and transverse shear strains
are present. These are given by

εb =

 ∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

 {
θx

θy

}
= L1θ, εs =

{
∂/∂x
∂/∂y

}
w − θ = L2w − θ (1)

where εb is the bending strain vector and εs is the shear strain vector, which
is zero in the thin plate limit.

For an isotropic material, bending moments and shears are given in terms
of the strains by

M =


Mx

My

Mxy

 = −D

 1 ν 0
ν 1 0
0 0 (1 − ν)/2

 εb = −Dεb, Q =
{

Qx

Qy

}
= kGhεs

(2)
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Figure 1: Sign convention.



2 Governing Equations C1143

In equation (2), D = Eh3/(1 − ν2) is the bending rigidity, E is Young’s
modulus, ν is Poisson’s ratio, G = E/2(1 + ν) is the shear modulus, h is
the plate thickness and k is a correction factor, which is taken as π2/12 for
dynamics problems.

The dynamic equilibrium equations for Mindlin’s theory are

Q − LT
1 M =

ρh3

12
θ̈, LT

2 Q + p = ρhẅ (3)

where ρ is the material density, p is the applied transverse load on the plate
and a dot denotes partial differentiation with respect to time, t.

Combining equations (1)–(3) gives the governing equations, namely

D

[
θx,xx +

(1 − ν)

2
θx,yy +

(1 + ν)

2
θy,xy

]
+ kGh(w,x − θx) =

ρh3

12
θ̈x

D

[
θy,yy +

(1 − ν)

2
θy,xx +

(1 + ν)

2
θx,xy

]
+ kGh(w,y − θy) =

ρh3

12
θ̈y (4)

kGh(w,xx − θx,x + w,yy − θy,y) + p = ρhẅ

where subscripts after the comma denote partial differentiation. Equation (4)
represents a system of three coupled equations of order six, and requires
the specification of three boundary conditions on any portion of the plate
boundary.

If the applied load varies sinusoidally with time, such that

p = p(x, y, t) = p(x, y) sinΩt (5)
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where Ω is the frequency of the applied load, we have

w = w(x, y, t) = w(x, y) sinΩt

θx = θx(x, y, t) = θx(x, y) sin Ωt (6)

θy = θy(x, y, t) = θy(x, y) sinΩt

Substituting equations (5) and (6) into equation (4) gives

D

[
θx,xx +

(1 − ν)

2
θx,yy +

(1 + ν)

2
θy,xy

]
+ kGh(w,x − θx) = −ρh3Ω2

12
θx

D

[
θy,yy +

(1 − ν)

2
θy,xx +

(1 + ν)

2
θy,xy

]
+ kGh(w,y − θy) = −ρh3Ω2

12
θy(7)

kGh(w,xx − θx,x + w,yy − θy,y) + p = −ρhΩ2w

Equation (7) is in terms of amplitudes only, and thus only amplitudes of
relevant quantities are considered in the remainder of the paper. In addition,
the bars on all quantities are dropped for convenience.

3 Strip-Element Interpolation

Figure 2 shows a typical plate structure that is suitable for analysis using the
proposed method. The structure has been subdivided into J strip-elements
of width bj , which have L equidistant nodal lines running in the x direction.
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Figure 2: Typical structure suitable for analysis.
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There are I = J(L− 1) + 1 nodal lines in the structure. Different boundary
conditions can be applied at the ends x = 0 and x = a of the strip-element.

On nodal line i, which is the lth nodal line of the jth strip-element,
continuity of displacements and rotations is ensured by taking

wi(ξ) ≡ wj,l(ξ), θi
x(ξ) ≡ θj,l

x (ξ), θi
y(ξ) ≡ θj,l

y (ξ) (8)

where ξ = x/a and a is the strip-element length.

Within strip-element j, the displacement and rotations are approximated
by

wj(x, y) =
L∑

l=1

wj,l(ξ)fL
l (η)

θj
x(x, y) =

L∑
l=1

θj,l
x (ξ)fL

l (η) (9)

θj
y(x, y) =

L∑
l=1

θj,l
y (ξ)fL

l (η)

where η = y/bj, and the functions fL
l (η) are Lagrange polynomials defined

as follows for L = 2, 3 and 4:
f 2

1 (ξ) = 1 − ξ, f 3
1 (ξ) = 1 − 3ξ + 2ξ2, f 4

1 (ξ) = 1
2
(2 − 11ξ + 18ξ2 − 9ξ3)

f 2
2 (ξ) = ξ, f 3

2 (ξ) = 4ξ − 4ξ2, f 4
2 (ξ) = 9

2
(2ξ − 5ξ2 + 3ξ3)

f 3
3 (ξ) = −ξ + 2ξ2, f 4

3 (ξ) = 9
2
(−ξ + 4ξ2 − 3ξ3)

f 4
4 (ξ) = 1

2
(2ξ − 9ξ2 + 9ξ3)
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The approximations in equation (9) with L ≤ 4 allow strip-elements
with up to a cubic order approximation in the y direction to be developed.
The examples considered below will demonstrate that this is sufficient in
practice. However, strip-elements with higher order approximations can be
developed in an analogous manner by simply increasing the value of L, and
this procedure is independent of any specified boundary conditions.

Along a nodal line, the displacements and rotations are approximated
by the sum of polynomial and trigonometric terms. Different forms of this
approximation can be used depending on the nature of the analysis and
the method that is used to enforce any required boundary conditions at the
strip-element ends [5].

For dynamics problems, it is computationally convenient to use a modi-
fied approximation scheme that leads to a positive-definite stiffness matrix.
Hence, the displacement and rotations along nodal line i are approximated
by

wi(ξ) =
M∑

m=1

W j,l
m sin αmξ + W̃ j,l

1 f 3
1 (ξ) + W̃ j,l

2 f 3
2 (ξ) + W̃ j,l

3 f 3
3 (ξ)

θi
x(ξ) =

M∑
m=1

Θj,l
xm

(
cos αmξ − f 3

1 (ξ) − (−1)mf 3
3 (ξ)

)
+Θ̃j,l

x1f
3
1 (ξ) + Θ̃j,l

x2f
3
2 (ξ) + Θ̃j,l

x3f
3
3 (ξ) (10)

θi
y(ξ) =

M∑
m=1

Θj,l
ym sin αmξ + Θ̃j,l

y1f
3
1 (ξ) + Θ̃j,l

y2f
3
2 (ξ) + Θ̃j,l

y3f
3
3 (ξ)
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where αm = mπ and M is the total number of harmonics. The coefficients
W j,l

m , W̃ j,l
1 , W̃ j,l

2 , . . ., Θ̃j,l
y3 are in general to be determined. Any boundary

conditions are simply treated by specifying appropriate values of some of
these coefficients.

Equation (10) can alternatively be written in matrix form as

wj(x, y) = Nj
w(x, y)Wj , θj = Nj

θ(x, y)Θj (11)

where Nw and Nθ are shape function vectors and Wj and Θj are vectors of
the strip-element coefficients.

4 Formulation of Strip-Element Matrices

For dynamics problems, we require the stiffness and mass matrices for the
strip-element. From equations (1) and (11), the strains within the strip-
element are obtained as

εj
b = L1N

j
θΘ

j = Bj
bΘ

j , εj
s = L2NwWj − Nj

θΘ
j = Bj

sW
j −Nj

θΘ
j (12)

The strip-element stiffness matrix kj is obtained from its strain energy,
giving

kj =
∫ bj

0

∫ a

0

{[
0 Bj

b

Bj
s −Nj

θ

]T [
D 0
0 kGhI

] [
0 Bj

b

Bj
s −Nj

θ

]}
dxdy (13)
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where I is an identity matrix and 0 is a zero matrix.

Some care is required in performing the integrals in equation (13) to en-
sure that locking does not occur in the thin plate limit [5]. The integrals in
equation (13) associated with the bending strain energy are performed ana-
lytically. However, for the integrals associated with the shear strain energy,
integration in the x direction is performed analytically whereas integration in
the y direction is performed using Gauss quadrature. The number of Gauss
points, G, used is given by

G = L − 1 (14)

In all cases this number is one less than that required to integrate the terms
associated with the shear terms exactly in the y direction.

The strip-element mass matrix mj is obtained from its kinetic energy,
giving

mj = ρh
∫ bj

0

∫ a

0

{
[ (Nw)T (Nθ)

T ]
[
I 0
0 h2

12
I

] [
Nw

Nθ

]}
dxdy (15)

In contrast to the stiffness matrix, all the integrals in equation (15) are
performed analytically.

The assembly of the global equations from the strip-element matrices
follows standard finite element procedures [1]. The calculation of natural
frequencies of vibration leads to a linear eigenvalue problem, namely

Kφ = Ω2Mφ (16)
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where K and M are the stiffness and mass matrices for the structure and φ
is the total vector of unknown coefficients.

Figure 3: Example 1 showing alternate discretisations (S = simple support,
F = free edge).
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5 Examples

Two examples are considered to demonstrate the accuracy of the method.
In both cases, Poisson’s ratio was taken as 0.3, and the results are given in
terms of a frequency parameter, λ, defined as

λ = Ωa2
√

2(1 + ν)ρ/E (17)

where a is a reference length.

5.1 Example 1

As a first example, we consider the free vibration of a square plate of size
a × a that is simply supported (S) on two opposite edges and free (F) on
the other two edges (see Figure 3). The first natural frequency parameter is
given in Tables 1–3 for the two alternate discretisations shown. The simple
support condition is exactly satisfied for discretisation (a), and hence this
discretisation leads to more accurate results for all cases. The results also
show that a quadratic strip-element is significantly more accurate that a lin-
ear strip-element. However, the difference in accuracy between the quadratic
and cubic strip-elements is not as great. It is also clear from the results
that the method correctly treats the free edge boundary condition, and that
accurate results are obtained with the solution of few equations.
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Table 1: Frequency parameter λ1 for a square SFSF plate using linear strip-
element (a/h = 10, reference value [9] = 0.4606).

Discretisation (a) Discretisation (b)
M L = 3 L = 5 L = 9 L = 17 L = 3 L = 5 L = 9 L = 17
0 0.5044 0.5116 0.5121 0.5121 0.6478 0.5007 0.4781 0.4650
1 0.4525 0.4601 0.4606 0.4606 0.6457 0.4989 0.4701 0.4633
3 0.4525 0.4601 0.4606 0.4606 0.6454 0.4986 0.4698 0.4630
5 0.4525 0.4601 0.4606 0.4606 0.6453 0.4984 0.4697 0.4629

Table 2: Frequency parameter λ1 for a square SFSF plate using quadratic
strip-element (a/h = 10, reference value [9] = 0.4606).

Discretisation (a) Discretisation (b)
M L = 3 L = 5 L = 9 L = 17 L = 3 L = 5 L = 9 L = 17
0 0.5030 0.5112 0.5121 0.5121 0.5141 0.4681 0.4631 0.4628
1 0.4510 0.4597 0.4606 0.4606 0.5125 0.4663 0.4614 0.4610
3 0.4510 0.4597 0.4606 0.4606 0.5122 0.4660 0.4611 0.4607
5 0.4510 0.4597 0.4606 0.4606 0.5121 0.4659 0.4610 0.4606
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Table 3: Frequency parameter λ1 for a square SFSF plate using cubic strip-
element (a/h = 10, reference value [9] = 0.4606).

Discretisation (a) Discretisation (b)
M L = 4 L = 7 L = 10 L = 13 L = 4 L = 7 L = 10 L = 13
0 0.5128 0.5119 0.5121 0.5121 0.4688 0.4629 0.4628 0.4628
1 0.4614 0.4604 0.4606 0.4606 0.4670 0.4611 0.4610 0.4610
3 0.4614 0.4604 0.4606 0.4606 0.4667 0.4608 0.4607 0.4607
5 0.4614 0.4604 0.4606 0.4606 0.4666 0.4607 0.4606 0.4606

5.2 Example 2

Secondly, we consider the free vibration of the plate with all edges simply
supported. To directly compare the different strip-elements, a quarter of
the plate was considered with 7 and 13 nodal lines. The first frequency
parameter is given in Table 4 for the two cases. Again, the results show that
the quadratic strip-element is superior to the linear strip-element whereas
these is little difference between the quadratic and cubic strip-elements.

6 Conclusions

This paper has presented a finite strip-element method for the dynamic anal-
ysis of thick plates. The method uses combined polynomial and trigonomet-
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Table 4: First frequency parameter λ1 for simply supported square plate
(a/h = 10, exact value = 0.9300).

Number of nodal lines
L = 7 L = 13

M Linear Quadratic Cubic Linear Quadratic Cubic
0 0.9501 0.9469 0.9468 0.9476 0.9468 0.9468
1 0.9491 0.9459 0.9459 0.9467 0.9459 0.9459
3 0.9351 0.9319 0.9318 0.9326 0.9318 0.9318
5 0.9338 0.9305 0.9305 0.9313 0.9305 0.9305
10 0.9334 0.9301 0.9300 0.9308 0.9300 0.9300

ric approximations within each strip-element. The formulation of the global
equations follows standard finite element procedures, and all boundary con-
ditions are correctly treated by the method. The examples demonstrated
that accurate solutions are obtained with the solution of few equations.
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