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Abstract

Linear systems in saddle point form arise in a wide variety of applica-
tions including fluid dynamics, elasticity and constrained optimization
problems. Indefinite preconditioners lead to effective strategies for
solving these systems. Short term iterative methods such as conju-
gate gradients can be employed if an inner product is determined that
makes the preconditioned coefficient matrix symmetric and positive
definite with respect to that inner product. We present new detailed
spectral estimates for such preconditioned problems that improve our
understanding of the expected behavior of indefinite preconditioners
when applied to real problems.
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1 Introduction

We are interested in large saddle point linear systems in the form

Kz = b, K =

[
A BT

B 0

]
, (1)

where A ∈ Rn×n is symmetric and positive semidefinite, B ∈ Rm×n has full
column rank, and kerB∩kerA = ∅ . This type of linear system arises in a large
variety of applications and has recently attracted great attention, as specifically
designed solution and preconditioning strategies can be devised to efficiently
solve the problem when n,m � 1000 . Benzi et al. [4] recently presented
a survey of various theoretical and computational issues associated with
numerical solution of (1). Since K is in general highly indefinite, symmetric
and positive definite, block diagonal preconditioning procedures are often
employed, which maintain the symmetry of the problem, so that a short term
iterative system solver can be used. On the other hand, it was observed that
indefinite preconditioning strategies, that try to mimic the coefficient matrix
block structure, may lead to very effective solution methods. Various strategies
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were proposed to cope with the resulting nonsymmetry and exploit the still rich
algebraic structure [4, 12, 11, 15]. Since the work of Bramble and Pasciak in
1988 [6], attention was also given to strategies that allow one to use an iterative
solver for positive definite matrices with short term recurrences, by using a
non-standard inner product during the iterative procedure [7, 9, 14, 17, 18].
These approaches rely on elegant theoretical properties of Krylov subspace
methods that allow the simplification of the general recurrences whenever
some symmetry relation can be exploited [10, 8, 1].

We concentrate on the strategy analyzed in detail by Schöberl and Zulehner [17],
where the application to linear systems stemming from partial differential
equations (pde) constrained optimization problems is also discussed. We
refine the spectral analysis provided by Schöberl and Zulehner [17], and we
experimentally show how this analysis provides new insights in understanding
the performance of the linear system solver.

Throughout this article the following notation will be used. For symmetric
matrices M and N, M > N means that M−N is positive semidefinite, while
M > N means that M−N is positive definite (the meaning of 6 and < also
follows). Given a symmetric and positive definite (spd) matrix B ∈ RN×N ,
we define the associated B-norm on RN as ‖v‖B :=

√
vTBv , for v ∈ RN .

2 Conjugate gradient in a non-standard inner
product

Consider the linear system
Ax = b (2)

with A ∈ RN×N nonsingular and b ∈ RN . Moreover, let B ∈ RN×N be a spd
matrix. A conjugate gradient (cg) method is an iterative method whose ith it-
erate xi (i = 1, 2, . . .) lies in x0 + Ki(A, s0) , where s0 is the initial residual,
and Ki is the Krylov subspace Ki(A, s0) = span

{
s0,As0, . . . ,Ai−1s0

}
such
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that
‖ei‖B := ‖x∗ − xi‖B = min

x∈x0+Ki

‖x∗ − x‖B ;

Ashby et al. [1] provide a full taxonomy. By exploiting some orthogonality
properties, the approximate solution at iteration i is obtained from the
previous iteration. This leads to a short term recurrence, and only a small
number of vectors needs to be stored in memory. Necessary and sufficient
conditions on B and A for a cg method to be computable were discussed
by Faber and Manteuffel [8]. In our context, these conditions are met if
B = DA , with D spd and if Dsi can be efficiently computed at every step of
the algorithm, where si is the ith preconditioned residual.

For the B-norm of the error of a cg method [17, e.g.],

‖ei‖B 6
2qi

1+ q2i
‖e0‖B , q =

√
κB(A) − 1√
κB(A) + 1

, (3)

where κB(A) = ‖A‖B ·
∥∥A−1

∥∥
B
= λmax(A)/λmin(A) is the real B-condition

number of A. Given a matrix A, if there exists D spd such that DA is spd,
then A is similar to a spd matrix [10, Theorem 6.2 and its proof], so its
eigenvalues are real and positive and κB(A) is well defined.

The estimate in (3) shows that the error B-norm is bounded by a quantity
that only depends on the eigenvalues of the possibly nonsymmetric A, and
the use of the B-norm is the key for this to occur. In our context, A is
a preconditioned saddle point matrix: that is A = K̂−1K , where K̂ is the
selected preconditioner. Schöberl and Zulehner [17] considered the symmetric
and indefinite matrix

K̂ =

[
Â BT

B BÂ−1BT − Ŝ

]
,

where Â and Ŝ approximate A and BÂ−1BT , respectively, and satisfy

A < Â and αxT Âx 6 xTAx for all x ∈ kerB , α < 1 , (4)

Ŝ < BÂ−1BT 6 βŜ , β > 1 . (5)
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The values of α and β are problem and method dependent. Estimates of
these quantities can be derived, for instance, Â is obtained by an algebraic
multigrid when A is the Laplace operator [5]. Ruge and Stuben [16] provided
more details on algebraic multigrids. The following theorem is from Schöberl
and Zulehner [17].

Theorem 1. Let (4) and (5) hold. Then D := K̂−K is spd and DK̂−1K is
spd. Moreover,

λmax(K̂
−1K) 6 β

(
1+

√
1− 1/β

)
, (6)

λmin(K̂
−1K) >

1

2

(
2+ α− 1/β−

√
(2+ α− 1/β)2 − 4α

)
. (7)

Theorem 1 allows one to use cg to solve the system K̂−1Kx = K̂−1b , which
at every step minimizes the error in the norm defined by B = DK̂−1K . The
same result is employed to give an estimate of the convergence rate, according
to (3).

3 Refined spectral estimates

If a matrixA is spd in the scalar product defined byD, then it is diagonalizable
with real and positive eigenvalues [10, Theorem 6.2]. Moreover, a closer look
at the proof reveals that the matrix X of eigenvectors for A can be chosen to
be D-orthogonal, that is XTDX = IN where IN denotes the N ×N identity
matrix. We now give a refined result where we do not restrict ourselves to
the saddle point structure.

Proposition 2. Let K̂ ,K ∈ RN×N be nonsingular symmetric matrices such
that D = K̂ − K > 0 . We suppose that both K̂ and K have n positive
eigenvalues and m = N− n negative ones. Then K̂−1K has real and positive
eigenvalues. Moreover, if D is positive definite, then K̂−1K is diagonalizable
and has n eigenvalues strictly smaller than 1 andm eigenvalues strictly greater
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than 1. If, on the other hand, D has the eigenvalue 0 with multiplicity `,
then K̂−1K has ` eigenvectors associated with the eigenvalue 1.

Proof: We first assume that D is positive definite. Then D defines an inner
product on RN. Since DK̂−1K = (K̂−K)K̂−1K = K−KK̂−1K is symmetric
there exists a D-orthogonal matrix X of eigenvectors for K̂−1K . Therefore

IN = XTDX = XT(K̂−K)X = XTK̂(IN − K̂−1K)X = XTK̂X(IN −Λ) ,

and hence XTK̂X = (IN −Λ)−1 and is thus diagonal. Since K̂ has m negative
and n positive eigenvalues Sylvester’s Law of Inertia ensures that XTK̂X hasm
negative and n positive diagonal entries. Then Λ must have m eigenvalues
greater than 1, and n smaller than 1. Similarly,

IN = XT(K̂−K)X = XTK(K−1K̂− IN)X = XTKX(Λ−1 − IN) ,

from which we deduce XTKX = (Λ−1−IN)
−1 = Λ(IN−Λ)

−1 , and thus XTKX is
also diagonal. Moreover, this equation shows that Λ must have n eigenvalues
lying in the interval ]0, 1[ and m eigenvalues lying outside [0, 1] . Adding
these conditions to the previous ones, we conclude that Λ has n eigenvalues
lying in ]0, 1[ and m eigenvalues lying in ]1,+∞[ .

We now consider the case where D is positive semidefinite. We define K̂ε =
K̂ + εIN and Dε = K̂ε −K for ε > 0 . Since Dε is symmetric and positive
definite, from the first part of the proof we deduce that K̂−1

ε K has real and
positive eigenvalues. Since limε→0+ K̂−1

ε K = K̂−1K , from the continuity of
the eigenvalues we conclude that K̂−1K (which is nonsingular) has real and
positive eigenvalues. Finally, from the relation D = K̂(I−K̂−1K) one deduces
that Dv = 0 if and only if K̂−1Kv = v . ♠

A saddle point matrix of the form (1) has n positive and m negative eigen-
values; the same holds for K̂. Thus, Theorem 2 ensures that

Λ(K̂−1K) ⊆ [λ1, λn] ∪ [λn+1, λn+m] (8)
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with 0 < λ1 6 λn < 1 < λn+1 6 λn+m .

The result above shows that the spectral interval used in the convergence
rate estimate is given by the union of two intervals which do not include the
value 1. We are interested in better understanding how far these intervels lie
from 1, and whether this distance may influence convergence. In the following
we provide new bounds for λn and λn+1, and also a new lower bound for λ1.
We first define two new quantities:

a = λmax
(
Â−1A

)
, s = λmax

(
(BÂ−1BT)−1Ŝ

)
, (9)

with α 6 a < 1 and 1/β < s < 1 from (4) and (5). Since D = K̂−K ,

Kz = λK̂z is equivalent to Kz = µDz with µ =
λ

1− λ
. (10)

So, λ < 1 if and only if µ > 0 , and λ > 1 if and only if µ < −1 .

Lemma 3. Let a and s be as in (9). Let µ be an eigenvalue of Kz = µDz .
Then either µ− 6 µ < −1 or 0 < µ 6 µ+ , with

µ± =
1

2

 a

1− a
±

√(
a

1− a

)2
+

4

(1− a)(1− s)

 .

Proof: Let z = (x,y) be an eigenvector associated with µ. Then

Ax+ BTy = µ(Â−A)x , (11)
Bx = µEy , (12)

with E = BÂ−1BT − Ŝ . Note that x 6= 0 , otherwise equation (11) gives BTy =
0 , and since BT is full column rank this would imply y = 0 . Equation (12) is
used to find y, which is then substituted into equation (11) to obtain

Ax+
1

µ
BTE−1Bx = µ(Â−A)x .
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Reordering the terms and premultiplying by µxT we obtain

µ2xT Âx− (µ2 + µ)xTAx− xTBTE−1Bx = 0 .

Since µ ∈]−∞,−1[∪]0,+∞[ we have µ2+µ > 0 . Moreover, xTAx 6 axT Âx .
Thus,

(1− a)µ2xT Âx− aµxT Âx− xTBTE−1Bx 6 0 . (13)

It holds that

xTBTE−1Bx 6
1

(1− s)
xTBT(BÂ−1BT)−1Bx 6

1

(1− s)
xT Âx .

Using the inequality in (13) and dividing by (1− a)xT Âx we find

µ2 − µ
a

1− a
−

1

(1− a)(1− s)
6 0 ,

from which both extremes µ− and µ+ are derived. ♠

We emphasize that the bounds of Lemma 3 are sharp. Indeed, consider the
case n = 2 , m = 1 , with

A =

[
1 0

0 1− εA

]
, BT =

[
0

1

]
, Â =

[
2 0

0 1

]
, Ŝ = 1− εS ,

with εA < 1
2
and εS < 1 . Clearly, a = λmax(Â

−1A) = 1 − εA and s =

λmax
[
(BÂ−1BT)−1Ŝ

]
= 1− εS . The eigenvalues of the matrix

D−1/2KD−1/2 =

1 0 0

0 1−εA
εA

(εSεA)
−1/2

0 (εSεA)
−1/2 0


satisfy the characteristic equation

(µ− 1)

(
µ2 − µ

1− εA
εA

−
1

εAεS

)
= 0 ,

whose solutions are µ = 1 and both bounds µ = µ− , µ = µ+ .
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Proposition 4. Let λn and λn+1 as in (8). Then

λn 6 1−
2(1− a)

√
1− s

(2− a)
√
1− s+

√
a2(1− s) + 4(1− a)

6 1−
(1− a)

√
1− s√

1− s+
√
1− a

(14)

and

λn+1 > 1+
(2− a)(1− s) +

√
a2(1− s)2 + 4(1− a)(1− s)

2s

> 1+
(1− s)

(
2a
√

(1− s)(1− a) + 2− a
)

2s
> 1+

1− s

2s
. (15)

Proof: Using Lemma 3 we find that

λn 6
µ+

1+ µ+

= 1−
1

1+ µ+

, λn+1 >
µ−

1+ µ−

= 1−
1

1+ µ−

.

Bounds (14) and (15) follow from simple, though tedious, calculations. ♠

Proposition 4 shows that the distance of λn+1 from 1 depends linearly on s,
the eigenvalue of (BÂ−1BT)−1Ŝ closest to 1, whereas the distance of λn from 1

depends nonlinearly on s and a. While it can be shown that the upper
bound (6) is sharp, the lower bound (7) will be improved. The approach we
follow deviates from that originally proposed by Schöberl and Zulehner [17].

Proposition 5. Let (4) and (5) hold. Let λ be an eigenvalue of K̂−1K. Then

λ > min
{
α, λ̄
}

where λ̄ =
1

2

(
2β+ α− 1−

√
(2β+ α− 1)2 − 4αβ

)
.

(16)
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Proof: We consider the generalized eigenvalue problemK(x,y)T = λK̂(x,y)T ,
that is,

Ax+ BTy = λ
(
Âx+ BTy

)
, (17)

By = λ (Bx+ Ey) , (18)

with E = BÂ−1BT − Ŝ > 0 . We observe that x 6= 0 , otherwise it would
follow that λ = 0 . We find y from equation (18) and we substitute it into
equation (17), giving

(
λÂ−A

)
x =

(1− λ)2

λ
BTE−1Bx . (19)

We first consider the case x ∈ kerB . Premultiplying the above equation
by xT ,

0 = xT
(
λÂ−A

)
x 6

(
λ

α
− 1

)
xTAx ,

and then λ > α . In the general case we write x = x1 + x2 , with x1 ∈ kerB
and 0 6= x2 ∈ (kerB)⊥Â :=

{
u ∈ Rn | uT Âv = 0 for all v ∈ kerB

}
, which is

well defined since Â induces a scalar product in RN. Note that x2 = Â−1BTw

for some w ∈ Rm .

We premultiply equation (19) by xT1 and by xT2 , and obtain (using xT1Âx2 = 0)

xT1
(
λÂ−A

)
x1 − x

T
1Ax2 = 0 , (20)

xT2
(
λÂ−A

)
x2 − x

T
2Ax1 =

(1− λ)2

λ
xT2B

TE−1Bx2 . (21)

We first consider the right hand side of equation (21). Using (5) we write
E 6 (β − 1)/βBT Â−1B . Hence, xT2BE−1BTx2 > cβx

T
2B

T(BÂ−1BT)−1Bx2 ,
where cβ = β/(β− 1) . Moreover,

xT2B
T(BÂ−1BT)−1Bx2 = x

T
2Â
[
Â−1BT(BÂ−1BT)−1B

]
x2 = x

T
2Âx2 . (22)
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We now turn to the left hand side of equation (21). We consider

−xT2Ax1 = xT2(Â−A)x1 6
(
xT1(Â−A)x1

)1/2 (
xT2(Â−A)x2

)1/2
6
√
1− α

(
xT1Âx1

)1/2 (
xT2Âx2

)1/2
. (23)

From (20) and condition (4) we deduce that −xT2Ax1 > (α− λ) xT1Âx1 . We
suppose λ < α (if not, α is the sought after extreme). The last inequality,
added to (23), shows that

(
xT1Âx1

)1/2
6

√
1− α

α− λ

(
xT2Âx2

)1/2
.

This inequality also holds for x1 = 0 . Returning to inequality (23) we now
conclude that −xT2Ax1 6 (1− α)/(α− λ)xT2Âx2 , and thus

xT2
(
λÂ−A

)
x2 − x

T
2Ax1 6

(
λ+

1− α

α− λ

)
xT2Âx2

=
(1− λ)(λ− α+ 1)

α− λ
xT2Âx2 . (24)

Collecting inequalities (22) and (24) we find that λ satisfies

λ− α+ 1

α− λ
>

(1− λ)

λ
cβ ,

or, after some algebra, λ2−(2β+α−1)λ+αβ 6 0 . We denote this polynomial
by p(λ). Since p(0) = αβ > 0 the smallest positive root of p(λ), which is
precisely λ̄, is a lower bound for λ when λ̄ < α . ♠

We next analyze the quality of λ̄ by comparing it with the lower bound in
Theorem 1, which is now denoted by λ̄SZ. We note that λ̄SZ is the smallest
positive root of a second degree polynomial, that is pSZ(λ) = λ2 − (2 +
α− 1/β)λ+ α . We observe that p(λ) − pSZ(λ) = (β− 1) [(1/β− 2)λ+ α] .
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Therefore, p(λ) > pSZ(λ) if and only if λ < α/(2 − 1/β) . If we show that
λ̄SZ < α/(2− 1/β) , then necessarily λ̄SZ < λ̄ , and thus λ̄ is a sharper lower
bound for the eigenvalues of K̂−1K. Let ρ = 2− 1/β . Our condition is

1

2

(
ρ+ α−

√
(ρ+ α)2 − 4α

)
<
α

ρ
,

which is equivalent to(
ρ+ α−

2α

ρ

)
−

√(
ρ+ α−

2α

ρ

)2
+ 4

α2

ρ

(
1−

1

ρ

)
< 0 ,

which holds since ρ > 1 , so that (1− 1/ρ) > 0 .

4 Numerical experiments

In this section we report on some of our numerical experiments to illustrate
our theoretical results. All computations were performed using Matlab [13].

We considered the pde-constraint optimal control problem described by
Schöberl and Zulehner [17, Section 4], where the system (2) takes the formM 0 K

0 νM −M
K −M 0

yu
q

 =

f0
0

 ,

where M is the mass matrix, K =M + K0 where K0 is the stiffness matrix,
and f is the discretized desired state. The data used to construct K, M and f
were obtained from Thorne [19, Target 1–2D]. We first consider the second
level of discretization, that is, the dimension of K is 675× 675 .

To construct the preconditioners Â and Ŝ we used algebraic multigrid [5],
three Gauss–Seidel iterations, and a scaling as proposed by Schöberl and
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Figure 1: Blue dots are eigenvalues of K̂−1K. The solid lines are the upper
and lower bounds and the dashed lines are the interior bounds. The dash-dot
lines is the improved lower bound.

Zulehner [17, Sections 3 and 4]. These preconditioners depend on two param-
eters, σ and τ, whose choice is crucial for obtaining good values of α and β.
We set σ = 0.9 , τ = 1.1(4/3) , ν = 10−4 [17, page 770, middle example, and
page 768]; the value of ν did not seem to affect their analysis [17, Table 6.2].
Figure 1 shows the eigenvalues of K̂−1K, together with the upper bound (6)
and both interior bounds (14) and (15). The estimates give a very realistic
idea of the location of the true eigenvalues. For this example, we also observe
that the bound (7) (lower solid line) is not sharp. Bound (16), represented
by the dash-dotted line, slightly improves it.

The two parameters a and s, which are quality measures of the preconditioners
Â and Ŝ (and thus of K̂), affect the distance of the eigenvalues of K̂−1K

from 1, according to Proposition 4. More precisely, if a and s are close to 1,
that is K̂ is a good enough preconditioner for K, the two spectral intervals
[λ1, λn] and [λn+1, λn+m] will be close to each other. Otherwise, if a and s
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are away from 1, the two intervals will be more distant. When Â and Ŝ are
constructed according to Schöberl and Zulehner [17], a is proportional to σ
and s is proportional to 1/τ. Numerical experiments showed that parameter ν
also influences the distance between the two intervals; indeed, in our setting
the distance is greater when ν ∼ 1 .

Figure 2 displays the convergence history of the method, in terms of the
relative error B-norm, namely ‖ek‖B/‖e0‖B , along with the theoretical upper
bound (3). We used the same model as before but with a finer discretization,
yielding K of size 11907. We used x∗ = randn(N, 1) as the exact solution
and x0 = 0 as the initial guess. The left plot of Figure 2 is obtained from
the first choice of values for σ, τ and ν. The predicted behavior is in
good agreement with observations. The right plot of Figure 2 is obtained
from realistic values of the parameters that somewhat deviate from the
ideal ones presented by Schöberl and Zulehner [17]: σ = 0.5 , τ = 2(4/3) ,
ν = 1 . In this case the bound (3) fails to predict the rate of convergence
of the method. The convergence curve does not suggest the occurrence
of superlinear convergence behavior, for which different bounds would be
more suitable [3]. The spectral intervals for the two choices of parameter
sets are Λ(K̂−1K) ⊂ [0.5821, 0.9468] ∪ [1.1282, 2.2891] (Figure 2, left), and
Λ(K̂−1K) ⊂ [0.4591, 0.7116]∪ [3.1391, 4.7747] (Figure 2, right). In the latter
case a much bigger gap is seen between the two intervals. We emphasize that
we used the results of Proposition 4 to estimate the interior extremes of the
intervals, therefore the true gap might be even larger.

5 Conclusions

We derived new sharper bounds for the spectrum of the preconditioned
coefficient matrix of a saddle point linear system that are used to analyze
the convergence of cg in a non-standard inner product. In particular, we
emphasized the presence of the union of two intervals containing the spectrum.
Our results indicate that the standard theoretical estimates for the error energy
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Figure 2: Convergence history and theoretical bound for σ = 0.9 , τ =
1.1(4/3) , ν = 10−4 (left); and σ = 0.5 , τ = 2(4/3) , ν = 1 (right ).

norm at each iteration may not be representative of the actual convergence
rate when the distance between these two intervals is sizable. We expect that
bounds such as those described by Axelsson [2], tailored to the presence of more
than one spectral interval, might be more descriptive. These considerations,
and their applicability to saddle point linear systems will be more closely
analyzed in future work.
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