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Abstract

A method for constructing a least squares spline with variable
knots using a smoothing spline basis is presented. The inherent sta-
bility problems of the usual formulation of the smoothing spline are
avoided by using the Kalman Filter, the Fixed-interval, discrete-time
smoother and the interpolation smoother as computational tools.
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1 Introduction

Least squares is a familiar approach to fitting a smooth curve to the n data
points (ti, yi), i = 1, . . . , n. The least squares approximation is the best
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approximation with respect to a norm whose square product is given by

n∑
i=1

(yi − f(ti))
2

where f(t) is our curve fitted to the data. Often

f(t) =
n∑

i=1

aiBi,k(t, ζ)

where Bi,k(t, ζ) is a B-spline of order k with knot points ζ1, . . . , ζn denoted
by ζ. Typically the B-spline basis is cubic (k = 4). The knots do not need
to coincide with data points.

In Jupp [4] and references contained therein, the objective function asso-
ciated with least squares splines is minimised over the knot points as well as
the coefficients of the B-spline basis. To obtain the least squares spline with
variable knots they minimise

S(ζ, a) =
N∑

i=1

(yi − f(ti))
2 =

N∑
i=1


yi −

n∑
j=1

ajBk,j(ti; ζ)




2

(1)

over a, ζ. Here aT = [a1, . . . , an]. The imsl subroutine dbsvls [3] may be
used to compute this variable knot B-spline least squares approximation.

Instead of using a B-spline basis we now want to consider a basis of
smoothing splines. Recall that B-splines have compact support whereas
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smoothing splines do not. A smoothing spline also has the additional pa-
rameter λ which controls the level of smoothness. A stochastic formulation
of the smoothing spline will be used. This involves using the Kalman Filter,
the Fixed-interval, discrete-time smoother and the Interpolation smoother
as computational tools and avoids the inherent stability problems of the
usual formulation of the smoothing spline (see, for example, Osborne and
Prvan [5]). Besides being a more stable implementation, this formulation
can be easily extended to vary the continuity properties and degree of the
piecewise polynomial; for more details refer to Prvan [7].

Schwetlick and Schütze [8] minimise the function associated with the
smoothing spline over the coefficients of the B-spline basis, knots and smooth-
ing parameter to produce a regression spline with variable knots. The same
constraint as in the approach presented in this paper is placed on the knots;
that is, the knots are ordered. Our approach is conceptually simpler with
the smoothing parameter being introduced into the basis.

Details about the stochastic formulation of the smoothing spline and re-
lated curves are given in Section 2. The construction of a smoothing spline
basis is outlined in Section 3, along with the least squares spline with variable
knots using a smoothing spline basis. Section 4 contains a simulation study.
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2 Stochastic formulation of a smoothing spline

The data (t1, y1), . . . , (tn, yn) are given. A smoothing spline f is the minimiser
of

n∑
i=1

(yi − f(ti))
2 + µ

∫ tn

t1

(
f (p)(t)

)2
dt. (2)

The resultant curve fitted to the data is a piecewise polynomial of degree
2p − 1. The data are assumed to be decomposed as a signal plus noise

yi = f(ti) + εi, εi ∼ N(0, σ2), i = 1, ..., n.

The resultant curve is a piecewise polynomial of degree 2p − 1 with 2p −
2 continuous derivatives. Wecker and Ansley [10] presented a stochastic
formulation of the smoothing spline utilising a result by Wahba [9]. She
showed that a polynomial smoothing spline is the solution to the stochastic
differential equation

dpx

dtp
= σ

√
λ

dω

dt
. (3)

Here ω(t) is a Wiener process (see for example Billingsley [2] with unit dis-
persion parameter, λ = 1

µ
and x(t1) = [x(t1), ..., x

(p−1)(t1)]
T has a diffuse

prior (i.e. x(t1) ∼ N(0, γ2Ip) and γ2 → ∞). The solution is

x(t) = lim
γ2→∞

x(t | n),

where x(t) is the first entry of x(t). The quantity x(t | n) is the expected
value of x(t) conditioned on the data y1, . . . , yn. The stochastic differential
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equation can be written in the matrix companion form

dx(t)

dt
=

(
0p−1 Ip−1

0 0T
p−1

)
x(t) + σ

√
λ

(
0p−1

dω
dt

)
. (4)

The fundamental matrix solution of the associated homogeneous differential
equation is denoted by T (ti, t1). The solution of (4) can be written recursively
as

x(ti) = T (ti, ti−1)x(ti−1) + u(ti, ti−1) for i = 2, ..., n. (5)

The random vector u(ti, ti−1) is normally distributed with zero mean and
covariance σ2λΩ(ti, ti−1), where

Ω(ti, ti−1) =
∫ ti

ti−1

T (ti, s)epe
T
p T (ti, s)

Tds. (6)

The observation equation now becomes

yi = eT
1 x(ti) + εi, εi ∼ N(0, σ2), i = 1 . . . n. (7)

The notation ej is used to denote a p-vector having all zeros except for a 1 in
the j-th position. The diffuse prior can be dealt with explicitly by setting γ
sufficiently large. For details on how to implicitly deal with the diffuse prior
refer to Wecker and Ansley [10].

The Kalman filter, the Fixed-interval, discrete-time smoother and the
Interpolation smoother are implemented on the state space formulation (7)
and (5) to obtain x(t | n) and hence the smoothing spline and its first p − 1
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derivatives evaluated at t; that is, x(t | n) =
[
f(t), f ′(t), . . . , f (p−1)(t)

]T
.

The assumption made is that λ is given. The smoothing parameter is usu-
ally chosen by generalised cross validation or maximum likelihood, for more
details refer to Osborne and Prvan [5], [6] and references contained therein.
In Osborne and Prvan [5] it was shown that the effect of the diffuse prior
disappears after p steps of the Kalman Filter.

For reference the Kalman filter for the state space formulation (5) and (7)
is

xi|i−1 = T (ti, ti−1)xi−1|i−1,

Si|i−1 = T (ti, ti−1)Si−1|i−1T (ti, ti−1)
T + λΩ(ti, ti−1),

di = e1Sk|k−1e
T
1 + σ2,

xi|i = xi|i−1 + Si|i−1e1d
−1
i (yi − eT

1 xi|i−1),

Si|i = Si|i−1 − Si|i−1e1d
−1
i eT

1 Si|i−1

i = 2, . . . , n.

The fixed-interval, discrete-time smoother is

xj|n = xj|j + Aj(xj+1|n − xj+1|j),

with
Aj = Sj|jT (tj+1, tj)

T

and
Sj|n = Sj|j + Aj(Sj+1|n − Sj+1|j)AT

j
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for j = n, . . . , 1. The quantities xn|n and Sn|n obtained from the forward
pass of the Kalman filter initiate this backward recursion.

The interpolation smoother for ti−1 ≤ t < ti is

x(t|n) = T (t, ti−1)xi−1|i−1 + A(ti, t)(xi|n − xi|i−1)

where
A(ti, t) = {T (t, ti−1)Si−1|i−1T (ti, t)

T + Γ(ti, t)}S−1
i|i−1

and
Γ(ti, t) = Ω(t, ti)T (ti, t)

T

with
S(t|n) = Ω(t, ti−1) + T (t, ti−1)Si−1|i−1T (t, ti−1)

T

−A(ti, t)(Si|i−1 − Si|n)A(ti, t)
T .

It is worth noting that the smoothed covariance is an end product in itself
and does not enter the recursion for the smoothed state vectors.

In practice, square root formulations would be used in implementing these
recursions.

3 Method
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3.1 Constructing the smoothing spline basis

Let the knot points ζ1, · · · , ζn be fixed. A basis of smoothing splines is con-
structed by generating n pseudo data sets each of n elements (ζ1, z

i
1), . . .,

(ζn, z
i
n). The i-th set is denoted by (ζ, zi) and zi, i = 1, . . . , n, are linearly

independent. For fixed λ an obvious choice is obtained by setting zi = ei

for i = 1, . . . , n where ei ∈ <n here. The i-th smoothing spline basis curve
is obtained by using (ζ, zi) as the data and then following the approach in
Osborne and Prvan [5], [6] to fit the smoothing spline to this pseudo data
set. The same smoothing parameter λ, constrained to be positive, will be
used for each pseudo data set.

Significant savings in computation may be made by realizing that the
covariance matrices obtained from the Kalman filter, fixed-interval, discrete-
time smoother and interpolation smoother are independent of zi and depend
only on ζ, so the covariance matrices need only be found for the first set
(ζ, z1). Subsequent applications of the filters or smoothers only require that
the steps for the state vectors be executed.

Let φj(t; λ, ζ) denote the j-th smoothing spline basis function, which
depends on the smoothing parameter λ and knots ζ. The approximating
curve is

f(t) =
n∑

j=1

ajφj(t; λ, ζ),

where φj(t; λ, ζ) = eT
1 x(j)(t | n). The superscript j denotes that the j-th
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pseudo data set (ζ, zj) has been used.

3.2 Least squares spline with fixed knots using a smooth-
ing spline basis

For fixed knot points, we minimise

S̃(ζ, λ, a) =
N∑

i=1


yi −

n∑
j=1

ajφj(ti; λ, ζ)




2

(8)

over a and λ. For fixed λ the problem is a linear least squares problem.

3.3 Least squares spline with variable knots using a
smoothing spline basis

The least squares spline with variable knots using a smoothing spline basis is
obtained by minimising S̃(ζ, λ, a) over a, λ and the choice of knots ζ1, · · · , ζn.
It is reasonable that λ depends on the data. We have n linear parameters,
a1, . . . , an, and n + 1 non linear parameters, ζ1, . . . , ζn, λ. Set ζ1 = t1 and
ζn = tN . To minimise the effect of the diffuse prior set ζi+1 = t1 + iδ for
i = 1, . . . , p − 1 where δ is chosen small enough so that the first p knots lie
in [t1, t2]. We end up having n−p−1 free knots. The stochastic formulation
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requires ζ1 < ζ2 < . . . < ζn so we need to build this constraint into any
constrained optimisation procedure used. Although it is possible to obtain
the derivatives of the objective function with respect to the knots, this is
usually very complicated.

Since λ needs to be fixed for smoothing spline calculations it makes sense
to split the optimisation into two steps.

1. For fixed λ minimise S̃(ζ; λ, a) over a1, . . . , an, ζp+1, . . . , ζn−1 which is
accomplished in two stages because the problem is a linear least squares
problem when the knots are fixed.

2. For fixed a1, . . . , an, ζp+1, . . . , ζn−1 we minimise over λ.

We continue the two step process until a minimum has been reached. For
the simulation study considered in Section 4 convergence was not slow.

3.4 Extensions

The approach can be extended to fitting a curve which has variable continuity
properties and degree. This is achieved by replacing epe

T
p in (6) by a positive

semi definite matrix Vi. The choice of the Vi determines the degree of the
polynomial in the (i−1)-th interval. If Vi is different from Vi−1 the number of
continuous derivatives at the (i−1)-th knot point is decreased. More details
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about varying the continuity and degree of the curve fitted can be found in
Prvan [7].

If two knots appear to be coalescing we could replace them with one knot
point and reduce the continuity across that knot point. This approach is
currently being investigated as a means of determining the number of knots
to use.

As a by-product of the stochastic formulation we estimate definite inte-
grals by replacing eT

1 in the observation equation by eT
2 . The estimate of∫ t

t1
f(t)dt is

∑n
i=1 aie

T
1 x(j)(t|n) and the estimate of f(t) is

∑n
i=1 aie

T
2 x(j)(t|n).

3.5 Remarks

The stochastic setting enables approximate pointwise confidence intervals to
be attached to the curve. The approximate (1− α)100% confidence interval
(C.I.) is

f(t) ± σ̂Uα
2

√√√√ n∑
j=1

a2
jvar (φj(t; λ, ζ))

where σ̂2 = S̃(ζ, λ, a)/(n − p), var(φj(t; λ, ζ)) = eT
1 S(j)(t|n)e1 and Uα

2
is

the upper α
2

percentage point of the standard normal distribution. The su-
perscript j denotes the j-th pseudo data set has been used to obtain the
smoothed state covariance matrix S(j)(t|n). As noted earlier, S(j)(t|n), j =
1, . . . , n, are identical because they depend on ζ not zi. This smoothed state
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covariance is obtained from the interpolation smoother after performing a
forward pass of the Kalman filter and a backward pass of the fixed-interval,
discrete-time smoother. For discussions on estimating the error for smoothing
splines more accurately refer to Van der Linde [11] and references contained
therein.

Like Schwetlick and Schütze [8] we can find a good location of variable
knots in a subinterval of [t1, tN ] with the knots fixed outside this subinterval.
As mentioned in [8] this option is useful when fitting several data sets where
one data set only differs from the others over a small subsection of [t1, tN ].

The approach above can be implemented without recourse to the stochas-
tic setting. The φj(t; λ, ζ) could be obtained by running any smoothing spline
software using the pseudo data (ζ, zj) for j = 1, . . . , n. This would remove
the necessity of fixing the first p knots when fitting a smoothing spline of de-
gree 2p− 1. The continuity properties or degree of the piecewise polynomial
being fitted cannot be varied using existing software. Developing the code
is not straightforward. As mentioned earlier, the stochastic formulation has
superior stability properties.
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4 A simulation study

One hundred data sets consisting of 74 points are generated for each of three
levels of noise (σ = 0.1, σ = 0.5 and σ = 1) where the underlying signal is

f(t) =
x3

x2 + 1
.

The 74 data points abscissae are uniformly spaced in the interval [−3.8, 3.5].
Each data set (300 in total) has a least squares spline with two variable
knots using a cubic B-spline basis fitted to it and a least squares spline with
variable knots using a cubic smoothing spline basis fitted to it.

Since each data set is used to fit a least squares spline with 2 variable knots
using a cubic smoothing spline basis and then using a cubic B-spline basis
we can perform one sample t-tests on the differences of the goodness of fit
measures to see if there is significant differences between the two approaches.
We will use 1

n
Σn

i=1(f(ti)− f̂(ti))
2, which for simplicity we will call the residual

sum of squares (note this is different from the statistical definition of residual
sum of squares which is 1

n
ΣN

i=1(yi − f̂(ti))
2), and integrated squared error

which is 1
n

∫ tN
t1

(f(t)− f̂(t))2dt, where f̂ is our fitted curve. A 95% confidence
interval (C.I.) for the difference between these two measures of goodness of fit
are obtained. Here the difference is smoothing spline approach value minus
B-spline approach value for the measure of goodness of fit being looked at.
Results are summarised in the table below. A p-value less than or equal to
α (typically 0.05 or 0.01) indicates there is sufficient evidence to suggest a
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significant difference with respect to the goodness of fit measure looked at.
The confidence interval or mean of the differences tells you in which direction
the difference is.

Table 1: Results for True Sum of Squared Errors.
σ p-value mean of differences 95% C.I. for differences
0.1 0.00 0.02691 (0.01991, 0.03391)
0.5 1.6 × 10−2 −0.06796 (−0.10948,−0.02643)
1 4.0 × 10−4 −0.1738 (−0.2689,−0.07884)

Table 2: Results for Integrated Squared Errors.
σ p-value mean of differences 95% C.I. for differences

0.1 0.00 0.001907 (0.001864, 0.001950)
0.5 1.2 × 10−3 −0.002627 (−0.004194,−0.001059)
1 0.00 −0.01600 (−0.0.02241,−0.009590)

Boxplots (Figure 1) give the pattern of variability in the variables being
looked at in an easy to compare graphical summary. The white horizontal
line lying inside the box gives the median value (point at which 50% of the
observations are smaller and 50% of the observations are larger), the height
of the box gives the interquartile range (iqr) which is the range of the middle
50% of the values, and the whiskers extend to whichever is closer: the most
extreme observation or 1.5 × iqr away from the box.
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Figure 1: Simulation Study Results
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As can be seen from the boxplots in Figure 1 and t-tests for differences
summarised in Table 1 and Table 2 for negligible noise (σ = 0.1) the least
squares spline using a B-spline method on average is superior in terms of
the two goodness of fit measures used whereas when the noise is noticeable
(σ = 0.5 and σ = 1) the converse is true.

5 Conclusion

Least squares splines with variable knots using a smoothing spline basis ap-
pear to perform better when the data is noisy. Least squares splines with
variable knots using a B-spline basis appear to perform better when the noise
is negligible.
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