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Iterative refinement and smoothing of cyclone
tracks from mean sea level pressure data
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Abstract

Local nonlinear regression fits are applied to mean sea level pres-
sure data from 24 member ensemble forecasts of three recent tropical
cyclones in the Australian region. Cyclone track estimates derived
from the fits are subjected to verification calculations in the form of
error-spread diagrams, demonstrating consistency with a recent global
ensemble study, with attention also given to cross and along track error
components.
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1 Introduction

Vorticity, circulation and mean sea level pressure (mslp) are important
quantities in the identification and characterisation of tropical cyclones [8]. For
tracking purposes, one class of methods estimates cyclone pressure centres from
forecast or observed data by parametric model fitting, including sinusoidal
functions along zonal and meridional directions [1], exponential inverse powers
of distance [4, 5], and ellipsoids in polar stereographic coordinates [6]. A
unique local minimum of the model function then provides the cyclone track
position and central pressure estimate.

This study explores the application of two regression functions, each requiring
fewer than ten parameters, to archived mslp ensemble forecast data for three
recent tropical cyclones in the Australian region, as generated by the access
global and regional ensemble prediction system, agreps [7]. With a spatial
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resolution of 0.375◦, or approximately 40 km, off-grid pressure centre estimates
are necessary for accuracy and smoothness considerations [6]. Parameter
estimation is achieved using Gauss–Newton iteration [2], with associated
sensitivity calculations also carried out to assess dependence on the forecast
mslp data. The resulting cyclone track estimates are subjected to further
analysis in the form of error-spread diagrams, allowing comparison with some
published global ensemble results [3], and the calculation of cross and along
track error components [9].

2 Pressure fitting surfaces

Near the centre of a tropical cyclone, mean sea level pressure is locally
approximated by an appropriate ‘depression function’ [4, 6]

p(θ,φ) ≈ f(θ,φ;q) ,

where θ is longitude, φ is latitude, and q contains parameters to be esti-
mated from mslp forecast data. For agreps regional forecasts [7], the data
comprises 24 ensemble members, each starting from slightly different initial
conditions, together with the ensemble mean and associated verifying analysis,
every six hours up to T + 72 hours where T represents the forecast start time.

Tropical cyclone (tc) Yasi crossed the Queensland coast during the early hours
of February 3, 2011. Most of its lifespan was captured by the 72 hour ensemble
forecast started at 18utc on January 30, 2011, with landfall occurring a few
hours before T + 72. About two weeks later, tc Dianne and tc Carlos were
simultaneously active, Dianne off the West Australian coast, and Carlos in
the Darwin area, both captured by an ensemble forecast started at 06utc
on February 16, 2011.
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2.1 Regression functions

A version of Holland’s exponential funnel shaped fitting function for pres-
sure p [4], characterised by a pressure minimum p0, depression depth a, and
radius parameter b, is

p = p0 + a exp

[
−b

|s(θ,φ) − s(θ0,φ0)|
2

]
, (1)

where (θ0,φ0) is the estimated cyclone centre, and s(θ,φ) represents spherical
to cartesian coordinate conversion. The fit (1) has wide application, and may
be extended to allow cyclone translation during core pressure observations
during the measurement period [5], but may suffer issues in the presence of
asymmetry.

Murray and Simmonds catered for asymmetry with an ellipsoid of best fit,
iteratively generated using spatial derivatives provided from bicubic spline
interpolation on a polar stereographic grid [6], selected for its near conformal
properties. Retaining the polar stereographic grid of Murray and Simmonds [6],
and employing an elliptic paraboloid

p = p0+
[(x− x0) cosα+ (y− y0) sinα]

2

a2
+
[(y− y0) cosα− (x− x0) sinα]

2

b2
,

(2)
also accommodates asymmetry, with less restrictions on the fit geometry
parameters than the ellipsoid case. The pressure minimum is p0, geometrical
parameters a and b control the asymmetry, α is a rotation angle in polar
stereographic space, and the centre is at (x0,y0) . Transforming from longitude-
latitude coordinates (θ,φ) to polar stereographic coordinates (x,y) ,

x = cosφ cos θ , y = cosφ sin θ .

Estimating the five parameters for (1), or six parameters for (2), now proceeds
by defining an appropriate set of data points, centred on the local grid mini-
mum, and applying Gauss–Newton iteration [2]. For the ensemble forecasts
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under consideration, this process is applied for each of the 24 members, the
ensemble mean, and verifying analysis, every six hours.

2.2 Gauss–Newton iteration

The residual rj for grid point j at (θj,φj) is the difference between the grid
pressure value pj and its approximate fit f ,

rj(q ;pj) = f(θj,φj ;q) − pj .

The cost function c(q ;pj) to be minimised is half the sum of squared residuals

c(q ;pj) =
1

2
rTr ,

and has a gradient with respect to the fit parameters q of

∇c(q ;pj) = g(q ;pj) =
∑
j

rj∇rj = A(q ;pj)Tr .

Matrix A(q ;pj) is the Jacobian of the residual function, and second derivatives
of c(q ;pj) are

∇2c(q ;pj) = ATA+
∑
j

rj∇2rj . (3)

Gauss–Newton iteration [2] applies quasi-Newton iteration to zero the gradient
function, or pursue stationary points of the cost function c(q ;pj) , with
Hessian approximation provided by first derivatives only. Iteration k proceeds
by solving a linear system for the parameter increments δk , and then updating
the parameters according to

ATkAkδk = −ATkrk , qk+1 = qk + δk ,

until convergence is achieved.
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2.3 Sensitivity of fit parameters to data

For a converged solution,
g(q ;pj) = 0 ,

differentiating with respect to the grid pressure data pj gives

∂g
∂q
∂q
∂pj

+
∂g
∂pj

= 0 , (4)

which constitutes a linear system of equations for the sensitivities ∂q/∂pj .
Unlike the Gauss–Newton iterations, which provide the initial solution q, an
exact second derivative matrix is used, as provided by the expression (3).

3 Numerical results

For a 72 hour ensemble forecast, cyclone tracks were estimated for each
ensemble member, the ensemble mean, and the associated verifying analysis,
every six hours. Best results were achieved via an ‘outer loop’ in members
and ‘inner loop’ in time strategy, whereby all parameter vectors for a given
ensemble member are calculated sequentially for its entire forecast, with initial
pressure centre guess provided by the gridpoint minimum, and remaining
geometrical parameter guesses taken from the previous time step. With this
approach the elliptic paraboloid fit (2) demonstrated superior robustness by
rapidly converging in 5–10 iterations for all members and all times, with
an applied exit tolerance of 10−7 on the difference norm between successive
iterates,

√
(qk+1 − qk)T(qk+1 − qk) , and final gradient norms in the vicinity

of 10−9. The axisymmetric fit (1) occasionally failed to converge, but recovered
after some adjustment of the initial guess, typically needing 10–20 iterations
and yielding a final gradient in the vicinity of 10−4.

A promising alternative iteration strategy under consideration eliminates the
inner time loop, and updates entire members, often proving effective at recov-
ering individual members which fail at occasional times. This naturally leads
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Figure 1: Elliptic paraboloid fit results for the ensemble mean forecast of
tc Yasi, showing fit as white contours with background colours describing
the mslp forecast data in hPa, at times T + 24, T + 48 and T + 72, moving
right to left. Fitting was performed on a 11 × 11 grid centred on the grid
minimum, with the minimum shown as a broken green line, and evaluated on
an extended 17× 17 area for visualisation. Pronounced asymmetry is evident
after landfall at T + 72.



3 Numerical results C547

to the possibility of also eliminating the member loop, thus simultaneously
updating all members and times, with ‘super’ parameter vectors containing
the entire ensemble forecast.

3.1 Tracks and parameter sensitivity

For tc Yasi, Figure 1 gives the ensemble mean track estimate produced by
elliptic paraboloid fitting on an 11×11 submesh centred on the grid minimum,
also marked as a broken line, with detailed snapshots at T + 24, 48 and 72.
At each of these times the fit was evaluated on an extended 17× 17 region,
centred on the grid minimum, with white contours indicating the fit geometry
and background colour shading showing the actual forecast data. Of the
three snapshots shown, T + 48 is the most intense, at about 990 hPa, and
also displays the highest degree of symmetry. Upon landfall, the elliptical
contours, strictly valid only in polar stereographic space, elongate in the
east-west direction to give a pronounced asymmetry.

For the track estimate of Figure 1, departures from the associated grid minima
were all below the grid spacing of 0.375◦, except for a longitude displacement
of just below 1.2 grid spacings at T + 0 when the depression was relatively
shallow and broad. A similar situation occurred for ensemble member 14
which produced the largest deviation of just over seven grid intervals in
latitude, positioning the track estimate outside the fitting points. Graphical
inspection of this result revealed the grid minimum to be a local ‘spot’ near
the edge of a large depressed region, which was effectively treated as part
of an elliptical area by the Gauss–Newton algorithm, producing a visually
acceptable picture.

Sensitivity results for Figure 1, showing partial derivatives of the fit minimum
pressure p0 with respect to the grid data used in the fit calculation (4), appear
in Figure 2 with the associated fit contours. Each case is characterised by a
local positive maximum around the track position estimate, where reductions
in grid pressure act to decrease the fitted minimum p0, indicating favourable



3 Numerical results C548

Figure 2: Sensitivity of fit minimum pressure p0 to grid pressure data for
the results shown in Figure 1, including the fit contours limited to the 11×
11 fitting points. A positive neighbourhood around the estimated track
position indicates ‘favourable’ fitting points which act to reduce p0.
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Figure 3: Axisymmetric fit results (1) for the ensemble mean forecast of
tc Carlos at T + 12 and T + 72, moving from upper right to lower left,
showing white fit contours against background colours of the mslp forecast
data in hPa. Fitting and evaluation was performed on an 11×11 grid centred
on the grid minimum (broken line).
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fitting points. As the fit contours expand away from the track the sensitivity
weakens and changes sign, revealing unfavourable fitting points that cut the
corners off the original fitting square. Regarding the actual values of p0, these
were usually slightly above the grid minima, up to 1.5% for the ensemble
mean track estimate of Figure 1.

For the axisymmetric fit (1), Figure 3 shows an ensemble mean track estimate
(tc Carlos), together with grid minima, forecast data and detailed snapshots
at T + 12 and T + 72, on the original 11× 11 fitting set. In this diagram the
smoothing effect of the fitting process is particularly evident on comparison of
the grid minima with the estimated track, with departures slightly exceeding
the grid spacing on three occasions.

The fitting results of Figures 1 to 3 constitute a tiny sample of those available
for the three ensemble forecasts, which will now be summarised by considering
track error and spread metrics, with a brief consideration of along and cross
track error components.

3.2 Error-spread diagrams

Spread-error consistency is a key performance indicator for ensemble fore-
casts, receiving particular attention in a comprehensive study of tropical
cyclone forecasts during 2009, involving six global ensembles from major
world centres [3]. In this study, Hamill et al. [3] constructed cyclone track
error-spread diagrams with error defined as the great circle deviation of the
ensemble mean’s track from the verifying position, and spread defined as the
average separation distance of the ensemble member tracks from that of the
ensemble mean, without specifying actual tracking methods. Hamill et al. [3]
concluded that there is an “urgent need” for improved tropical cyclone track
and intensity forecasts.

Using the error and spread measures of Hamill et al. [3], with track estimates
generated from the elliptic paraboloid fit (2), an error-spread diagram for
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Figure 4: Error-spread scatter plots for all three cyclone forecasts, using
estimated track data from the elliptic paraboloid fit (2), on an 11× 11 fitting
area. Results are given every six hours, with colour by time and size by error.
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the three tropical cyclones under consideration is given in Figure 4, showing
results every six hours. As noted by Hamill et al. [3], calibrated ensemble
systems should provide consistency between error and spread, or populate
the diagonal vicinity. In this respect, overspreading is evident for most of the
tc Yasi forecast, whereas tc Carlos is mostly underspread, and tc Dianne
shows early underspreading and crosses the diagonal later in the forecast.
Overall, the picture displays a reasonable population balance between each
side of the diagonal.

The largest error-spread box in Figure 4 is for the tc Dianne forecast, with a
spread of just over 400 km, followed by tc Carlos at approximately 230 km,
then tc Yasi at 180 km. These fit well inside the 800 km boxes of Hamill
et al. [3], which were constructed from many more storm forecasts (between
25 and 114), offering a useful check on the agreps ensemble’s performance.
An additional check involves repeating the error-spread calculations of Figure 4
with grid minima replacing the track estimates. This check indicates maximum
displacements in error of less than 50 km for tc Yasi and tc Carlos, and for
tc Dianne, within 100 km. Maximum associated spread deviations over all
three cases reached just over 30 km.

3.3 Cross track and along track errors

Following the methodology outlined by Heming [9], along and cross track
error components were calculated for the track estimates. At any forecast
time, the current best track position and its predecessor, six hours earlier,
are connected by a great circle arc which intersects a second great circle arc
passing through the current estimated track position at 90◦. Connecting this
intersection point, obtained by solving a pair of nonlinear equations, to the
current best track point gives the along track component, and connection
with the current estimated track point constitutes the cross track component.

For tc Dianne, which occupied the largest error-spread box in Figure 4,
ensemble member 12 crossed the coast and finished 1465 km from the best
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Figure 5: Track error behaviour, including along and cross components, for
ensemble member 12 of the tc Dianne forecast, with track estimate provided
by elliptic paraboloid fitting (2) on an 11 × 11 fitting area, and markers
coloured by time. At T + 72 the deviation from the best track was 1465 km.
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track at T + 72. Along and cross track error components for this member,
calculated from the elliptic paraboloid track estimate (2), are shown in
Figure 5, indicating a strong cross track contribution commensurate with the
total error for most of the forecast.

4 Summary and conclusions

Two nonlinear regression fits, one symmetric and one allowing asymmetry, were
applied to archived three day regional ensemble forecast mslp data for three
recent tropical cyclones in the Australian region, with parameter estimation by
Gauss–Newton iteration. The asymmetric case, an elliptic paraboloid in polar
stereographic coordinates, demonstrated superior robustness and confirmed a
need for pressure asymmetry on multiple occasions. Subsequent track error
and spread calculations for the three cyclones placed the ensemble results well
within the error-spread boxes of a recent comprehensive global ensemble study.
However, more storms need to be considered for a fairer comparison. Future
studies will address this deficiency, in addition to asymmetry, parameter
sensitivity, and meaningful ensemble measures involving total, along track,
and cross track error components.
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