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Abstract

A number of the standard numerical methods used to solve the
two-dimensional shallow water wave equations are unstable if their
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domains contain dry beds. We present a robust and stable finite vol-
ume method based on an unstructured triangular grid which can deal
with dry beds. In particular we present a second-order explicit method
which deal with dry beds in a stable manner. The method uses a sim-
ple approximate one dimensional Riemann solver due to Toro which
provides the basis for an efficient implementation.
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1 Introduction

The shallow water equations are used extensively to model the behaviour
of flows produced by precipitation or as a result of the failure of man-made
structures. These problems generally involve sudden releases of water or
intense rainfall bursts which produce rapid runoff. Both problems are char-
acterised by abrupt changes in water depth and flow rates. In addition, these
phenomena also involve water flowing over dry terrain, see for example Zop-
pou and Roberts [18]. Models which can accurately and efficiently simulate
the behaviour of abrupt flows over a dry bed are required. A two-dimensional
model which is capable of simulating abrupt changes in flow is described. The
finite volume model is efficient and is capable of simulating flows over a dry
bed. It has second-order accuracy and uses an approximate Riemann solver
to solve the shallow water equations on an unstructured triangular grid. The
method uses a simple approximate one dimensional Riemann solver due to
Toro [13] which provides the basis for an efficient implementation.
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2 Shallow Water Equation

The conservative form of the two-dimensional shallow water equations are
given by [15]

∂U

∂t
+ ∇ · F = 0 (1)

where (and through out) U is a vector of conservative variables: h, height;
u, x “momentum”; and v, y “momentum”, and F is the flux tensor. It can
be expressed in Cartesian form as

∂U

∂t
+

∂G

∂x
+

∂H

∂y
= 0 (2)

where G and H are the Cartesian components of F. The vectors U, G and
H can be expressed in terms of the primary variables, u, v and h as

U =


 h

uh
vh


 , G =


 uh

u2h + gh2/2
uvh


 and H =


 vh

uvh
v2h + gh2/2


 (3)

in which g is the acceleration due to gravity, h is the water depth and u and
v are the flow velocity in the x and y-directions respectively. The system is
strictly hyperbolic with three real and distinct eigenvalues.
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3 Numerical Solution of the Shallow Water

Equation

It is the hyperbolic character of the shallow water equations that makes
finding solutions to these equations difficult. Hyperbolic equations admit
discontinuous and smooth solutions. Even for the case in which the initial
conditions are smooth, the non-linear character combined with the hyperbolic
type of the equations can lead to discontinuous solutions in finite time. The
non-linear character of the shallow water equations means that analytical
solutions to these equations are limited to only very special cases. Numerical
methods are generally used to obtain solutions to practical problems.

Local initial value problems which involve discontinuous neighbouring
states are known as the Riemann problems. Numerical schemes based on
the solution of local Riemann problems are generally known as Godunov-
type schemes. Their main advantages are that they are robust and accurately
capture the location of discontinuities such as shocks and contact surfaces.
Two-dimensional Riemann solvers do not appear to have matured enough to
be used in the construction of multi-dimensional schemes. Even if such solvers
were available, the resulting schemes are likely to be too complicated for
common use [3]. A number of efficient one-dimensional approximate Riemann
solvers have been proposed [9], [4], [5], [3]. These can be used to solve the
two-dimensional dam break problem on a Cartesian grid using fractional
step or splitting techniques [11]. The Finite Volume Method can also be
used to solve the two-dimensional problem [17], [1]. Like finite elements,
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the major advantage of the finite volume method is that it can be applied
to any unstructured grid. Generally, the finite volume method requires less
computational effort than finite elements because it involves the solution of
a local one-dimensional Riemann problem, which can be solved efficiently.

From our experience with numerical schemes for solving the dam break
problem, the approximate Riemann solver developed by Toro [12] was found
to be robust and efficient. Unlike many other schemes, such as finite differ-
ences and other approximate Riemann solvers, it avoids the problems asso-
ciated with sonic points, where a non-physical expansive shock is produced.
The finite volume method and the approximate Riemann solver developed
by Toro [12] have been chosen to solve the shallow water equations in two-
dimensions.

4 Finite Volume Method

The finite volume method is based on the integral form of the conservation
equation (2). The discretisation of the integral form of (2) ensures that
the basic quantities, mass and momentum will also be conserved across a
discontinuity [6]. Integrating (2) over an arbitrary triangular element Ei, the
basic equation of the finite volume method obtained using the divergence
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theorem is given by

∂

∂t

∫
Ei

U dA +

∮
∂Ei

F · n dS = 0 (4)

in which n is the unit outward vector normal to the boundary Si, and dA
and dS are the area and arc elements respectively. This law states that the
time rate of change in U inside a control volume Ei, depends on the total
flux through the boundary ∂Ai. The integrand F ·n is the normal flux across
a surface with normal n.

Consider the rotation matrix

Tn =


 1 0 0

0 n1 n2

0 −n2 n1


 (5)

where n = (n1, n2). The application of the rotation matrix Tn aligns the
normal, n with the x-axis. Using the rotational invariance property of the
two-dimensional shallow water equations,

F(U) · n = T−1
n G(TnU). (6)

Using (6), (4) becomes

∂

∂t

∫
Ei

U dA +

∮
∂Ei

T−1
n G(TnU) dS = 0. (7)
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Within each triangular element or control volume, U is assumed to be con-
stant and the flux across each edge, j of the element, i is determined by the
states in the neighbouring elements separated by edge j. Discretising (7),
the basic equation for the finite volume method becomes

Ai
dUi

dt
+

∑
j∈N(i)

T−1
ni,j

G̃(Tni,j
Ui,Tni,j

Uj)Li,j = 0 (8)

where Ai is the area of the element i, N(i) is the set of all elements which
share a common edge with element i, Li,j is the arc length of the edge be-

tween element i and element j and G̃(Tni,j
Ui,Tni,j

Uj) is an estimate of the
flux across the boundary separating two neighbouring elements. The major
advantages of this formulation are;

1. The underlying principle is simple.

2. The ability to use flexible meshes, such as triangles or quadrilaterals
which suit problems with complex geometries.

3. The use of an integral conservation law such that the solution may be
smooth or discontinuous.
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4.1 Solution of the One-Dimensional Riemann Prob-
lem

In (8), an estimate of the normal outward flux, G̃(Tni,j
Ui,Tni,j

Uj) is re-
quired. With an appropriate rotation so that the outward normal coincides
with the x-direction, then Ul = Tni,j

Ui and Ur = Tni,j
Uj. The problem

now involves the solution of a local one-dimensional problem in the direction
normal to the element interface, where Ul and Ur are the states in neigh-
bouring elements with common boundaries. Recalling that within each cell
U is constant, then this will usually result in a discontinuity across the edge
between elements Ei and Ej .

There are a number of schemes that can be used to define this flux. A
wide range of numerical schemes have been examined for the solution of
the one-dimensional shallow water equation applied to problems with dis-
continuities in the solution. Although many numerical schemes satisfy the
Rankine-Hugoniot jump condition for shocks, they produce entropy violat-
ing shock solutions. For example, some first-order upwind schemes [2], [10],
[16] exhibit problems with sonic points at the transition from subcritical to
supercritical flow. This entropy violating solution is due to the inability of
first-order upwind scheme to establish the direction of the flow at a point
with zero horizontal momentum (this corresponds to the problem observed
at sonic points in compressible flow dynamics). Other numerical schemes
produce more dramatic discontinuities in the simulated profiles.
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Only approximate Riemann solvers which either explicitly or implicitly
include sonic points in estimating the intercell flux avoid the entropy violat-
ing solution. These include Osher’s P scheme [4] and the scheme recently
developed by Toro [12], [5]. This scheme implicitly includes sonic points. We
use Toro’s scheme as our approximate Riemann solver

The approximate Riemann solver solves the following Riemann problem

U(x, 0) =

{
Ul If x ≥ 0
Ur If x < 0.

(9)

where l and r denote the states on either side of a discontinuity. The Riemann
problem can be decomposed into three waves for the two-dimensional shallow
water equations. The middle wave is always a contact discontinuity and
the left and right waves can be either shocks or rarefaction waves. Classic
approximate Riemann solvers assume that the solution of (9) consists of only
two waves separating three constant state regions. For the one-dimensional
shallow water equation this is correct. For the two-dimensional shallow water
equation however, there is a third wave, which is a contact discontinuity.
Toro et al. [14] developed an approximate Riemann solver that includes the
contact discontinuity in the solution.

Given the initial data; hl, hr, ul, ur, vl and vr, the Riemann problem for
the two-dimensional problem has the structure shown in Figure 1 of four
constant states separated by shocks or rarefaction fans to the left, centre and
right with speeds Sl, Sm and Sr.

The solution for h and u is unaffected by v and the complete solution of
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Figure 1: Structure of Solution of Riemann Problem: Sl and Sr are either
shock or rarefaction waves and Sm is a contact discontinuity.

the Riemann problem for the conservative quantities, h and uh in the two-
dimensional problem is identical to that required for the one-dimensional
shallow water equation.

Toro’s method provides estimates of the shock speeds

Sl = min(ul −
√

ghl, u
∗ −√

gh∗)
Sr = max(ur +

√
ghr, u

∗ +
√

gh∗)
(10)

where

u∗ =
ul + ur

2
+

√
ghl −

√
ghr (11)

and

h∗ =
(ul + 2

√
ghl − ur − 2

√
ghr)

2

16
(12)
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are the estimates of the h and u values of the intermediate state.

This is an explicit scheme with the usual Courant restriction on the time
step. Here the restriction on the computational time step is ∆tc ≤ ∆x in
which c = max(|Sl|i, |Sr|i ∀ i) and ∆x is the distance from the centroid of
a triangle to the midpoint of the side of the triangle closest to the centroid.
Although the solution may be smooth in some regions, the first-order ap-
proximate Riemann solver is solved at each cell interface. The solution of the
Riemann problem will automatically establish whether the states on either
side of a cell interface will degenerate into a shock or a smooth rarefaction
fan.

4.2 Dry Bed Problem

Equation (10) assumes that there exists a finite water depth everywhere. If a
dry bed exists upstream hl = 0, the two eigenvalues collapse into one and the
system of equations is not strictly hyperbolic. Under these circumstances no
shock exists and Sl represents the speed of the head of the rarefaction wave
and Sr represents the speed of the toe of the rarefaction wave. Therefore,

Sl = ur − 2
√

ghr

Sm = Sl

Sr = ur +
√

ghr.
(13)

Similar expressions can be derived for a dry bed downstream.
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4.3 Limiters

Within each triangle the conserved quantities are assumed to be constant,
see Figure 2(a). These values could be used to represent the left and right
states between adjacent triangles. The use of these quantities in the Riemann
solver will result in first-order approximations of the interface fluxes. In order
to obtain second-order accuracy, a piecewise linear estimate of the left and
right states is required. For a given cell, j the second-order approximation of
the conserved quantities at the midpoint of the interface between elements
Ei and Ej is expressed as

Ul = Uj + ∇Uj · rj

where Ul is an estimate of the conserved quantities to the left of the conti-
nuity along the common edge, AB between triangles i and j, rj is the vector
from the cell centroid to the midpoint of AE, Uj is the vector of conserved
quantities at the centroid of triangle j and ∇Uj is the gradient of triangle
formed using the centroid values of all neighbouring triangles to triangle j,
see Figure 2(b).

Numerical oscillations are common with second and higher-order numer-
ical schemes. These oscillations can be controlled by either limiting them us-
ing non-linear limiters or by introducing artificial viscosity in the numerical
scheme. Here, non-linear limiters are used during the estimation of conserved
quantities at the edges of each element so that oscillations that would have
introduced by new local extrema in the solution are suppressed. The limiter
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Figure 2: Triangular elements in the finite volume method.
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is applied to the gradient terms so that

Ul = Uj + Φj∇Uj · r
where 0 ≤ Φj ≤ 1 is a chosen limiter. When Φj is set to zero, the computation
domain is characterised by piecewise constant regions resulting in a first-order
scheme. The non-linear limiter is given by

Φj = max [min(βrj, 1), min(rj , β)] (14)

where

rj =




(Umax
j −Uj)/(Ul − Uj) If Ul > Uj

(Umin
j − Uj)/(Ul − Uj) If Ul < Uj

1 If Ul = Uj

and

Umin
j = min(Uj ,Ui), Umax

j = max(Uj ,Ui).

This procedure is carried out sequentially for the two triangles separated by
AB giving Ul and Ur. These are used in the Riemann solver to estimate the
flux across AB. When β = 1, Φ is the Minimod limiter and when β = 2
the limiter is Roe’s Superbee limiter. This approach is similar to that used
by Anastasiou and Chang [1]. It differs from theirs because their limiter is
defined as

Φ = min(Φj), j = 1, 2, 3.



4 Finite Volume Method C1275

In this case there are circumstances which lead to very small values of h
at the edges of a triangle. In addition it was possible for Ui > Uj but for
Ul < Ur. We added an extra amount of limiting to ensure that if Ui > Uj ,
then Ul ≥ Ur. In addition we found it necessary to choose β = 1. Without
these extra conditions very small values of h produced very large values for
u = uh/h. To satisfy the Courant criterion extremely small time step are
required by the explicit scheme. These extremely small time steps make the
scheme computationally expensive. The new approach limits estimates of
the dependent variables at each triangle edge by the values between adjacent
triangles. This overcomes the problem of obtaining small values of h. The
time steps that can be used in the dry bed problem remain competitive
with implicit schemes, which require the solution of large systems of non-
linear equations. Although, this is compensated for by the advantages of an
unrestricted time step, for some problems the speed of the transients may
only be adequately resolved with small time steps such as those commonly
employed in explicit schemes.

4.4 Boundary Conditions

The boundary conditions are very simple to implement in this scheme. For
a cell, with constant state U = [h uh vh]T which has an edge that forms a
boundary, then it is only necessary to specify the unknown state, Ub on the
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other side of the boundary. For a transmissive boundary condition

Ub = U (15)

and for a reflective boundary

Ub =


 h

−uh
vh


 . (16)

5 Hypothetical Examples

The finite volume scheme is demonstrated using a problem containing 100
by 100 computational cells, each cell has a width of ∆x = 0.2 metres. The
initial conditions consist of two states separated by a circular discontinuity.
The radius of the circle r = 5 metres and it is centred at x = 0 metres. Both
components of the velocity u and v are set to zero everywhere and h is set
to h1 = 10 metres within the circle and (a) h0 = 1 or (b) h0 = 0 metres
outside the circle. In the computational scheme, ∆t = 0.005 seconds, which
satisfies the Courant criterion, Cr = w∆t/∆x ≤ 1, where w =

√
u2 + v2

and the solution is sought when t = 0.15 seconds. In case (a), by time
t = 0.15 seconds, a bore has formed. Fluid drains from the deepest region
as a rarefaction wave progresses outwards. In this region supercritical flow
exists. The results for the second-order finite volume scheme are shown in
Figure 3(a). Figure 3(b) shows the solution when h0 = 0, the dry bed case.
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We see that no bore forms, instead a rarefaction wave extends into the dry
bed. The finite volume scheme produces sharp resolution of the shock and
discontinuities.

6 Conclusion

A model capable of simulating unsteady two-dimensional unsteady flow on an
arbitrary triangular grid is described. The second-order finite volume scheme
is comparable to second-order schemes solved on Cartesian grids. However,
it avoids the generation of secondary waves associated with Cartesian grids.
It is also capable of handling the dry bed problem without generating large
velocities.
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Figure 3: (a) Two-dimensional solution of the circular dam break problem
using our finite volume scheme. Solution at time t = 0.15 with initial condi-
tions consisting of a plug of water of radius 5 metres and height h1 in a pond
of water of depth h0: h0 = 1m and h1 = 10m.
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Figure 3: (b) h0 = 0m and h1 = 10m.



References C1280

[2] A. Bermudez and M.E. Vazquez. Upwind methods for hyperbolic
conservation laws with source terms. Computers Fluids,
23(8):1049–1071, 1994. C1268

[3] S.J. Billett and E.F. Toro. On WAF-type schemes for
multidimensional hyperbolic conservation laws. Journal of
Computational Physics, 130(1):1–24, 1997. C1264, C1264

[4] B. Engquist and S. Osher. One sided difference approximations for
nonlinear conservation laws. Mathematics of Computation,
36(154):321–351, 1981. C1264, C1269

[5] L. Fraccarollo and E.F. Toro. Experimental and numerical assessment
of the shallow water model for two-dimensional dam-break type.
Journal of Computational Physics, 33(6):843–864, 1995. C1264, C1269

[6] C. Hirsch. Numerical Computation of Internal and External Flows,
Volume 1, Fundamentals of Numerical Discretization. John Wiley and
Sons, New York, 1988. C1265

[7] C.G. Minghan and D.M. Causon. High resolution finite-volume
method for shallow water flows. Journal of Hydraulic Engineering,
American Society of Civil Engineers, 124(6):605–614, 1998.

[8] S. Osher and F. Solomon. Upwind difference schemes for hyperbolic
conservation laws. Mathematics of Computation, 38(158):339–374,
1982.



References C1281

[9] P.L. Roe. Approximate Riemann solvers, parameter vectors, and
difference schemes. Journal of Computational Physics, 43(3):357–372,
1981. C1264

[10] J.L. Steger and R.F. Warming. Flux vector splitting of the inviscid gas
dynamic equations with application to finite-difference methods.
Journal of Computational Physics, 40(2):263–293, 1981. C1268

[11] G. Strang. On the construction and comparison of finite difference
schemes. Society for Industrial and Applied Mathematics, Journal for
Numerical Analysis, 5(3):506–517, 1968. C1264

[12] E.F. Toro. A weighted average flux method for hyperbolic conservation
laws. Proceedings of the Royal Society, Series A, 423:401–418, 1989.
C1265, C1265, C1269

[13] E.F. Toro. Riemann problems and the WAF method for solving the
two-dimensional shallow water equations. Philosophical Transactions
of the Royal Society, London, Series A, 338:43–68, 1992. C1262

[14] E.F. Toro, M. Spruce and W. Speares. Restoration of the contact
surface in the HLL-Riemann solver. Shock Waves, 4:25–34, 1994.
C1269

[15] T. Weiyan. Shallow Water Hydrodynamics: Mathematical Theory and
Numerical Solution for Two-Dimensional System of Shallow Water
Equations. Elsevier Science Publishers, 1992. C1263



References C1282

[16] J.Y. Yang, C.A. Hsu and S.H. Chang. Computations of free surface
flows Part 1: One-dimensional dam-break flow. Journal of Hydraulic
Research, 31(1):19–34, 1993. C1268

[17] D.H. Zhao, H.W. Shen, G.Q. Tabios, J.S., Lai, and W.Y. Tan.
Finite-volume two-dimensional unsteady-flow model for river basins.
Journal of Hydraulic Engineering, American Society of Civil
Engineers, 120(7):863–883, 1994. C1264

[18] C. Zoppou and S. Roberts. Catastrophic collapse of water supply
reservoirs in urban areas. Journal of Hydraulic Engineering, American
Society of Civil Engineers, 125(7):686–695, 1999.

C1262


	Introduction
	Shallow Water Equation
	Numerical Solution of the Shallow Water Equation
	Finite Volume Method
	Solution of the One-Dimensional Riemann Problem
	Dry Bed Problem
	Limiters
	Boundary Conditions

	Hypothetical Examples
	Conclusion
	References

