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Thermal ignition in rectangular and triangular
regions
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Abstract

When cellulosic materials such as cotton, hay, sawdust or bagasse
(sugar-cane residue) are stored in sufficiently large quantities they may
self-heat with the possibility of spontaneous ignition. Mathematically,
there is a bifurcation to the burning state if ignition occurs. It is
important to know the critical values of the basic physical quantities,
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such as the ambient temperature or characteristic size of the self-
heating sample, at which the bifurcation to the burning state takes
place. The solution method for this class of problem depends strongly
on the domain under consideration.

Here we consider triangular and rectangular domains with the ap-
propriate mixed boundary conditions. The governing pdes for the
time-dependent problem can be solved by the method of lines, with fi-
nite difference schemes used for the discretisation of the spatial deriva-
tives. Any suitable ode solver can be used for the time integration,
so that stiff problems such as those that arise naturally in combustion
problems are easily dealt with. In addition, with this approach the
steady-state equations are readily extracted and hence the bifurcation
structure describing the criticality of the material can be calculated
without difficulty. We demonstrate the crucial role played by the
boundary conditions in determining, for example, the location of the
point of maximum heating.
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1 Introduction

Self-heating is a process where a material increases in temperature due to
the release of heat from ongoing chemical reactions and without drawing heat
from its surroundings. The conditions which determine whether self-heating
may lead to spontaneous ignition include the rate of internal heat generation
and the body’s insulation properties, i.e. rate of air supply and heat release.
Spontaneous ignition is a major concern because of the dangers associated
with fires and the associated destruction or spoilage of the stored product.

While ignition characteristics or criticality for a given stored material de-
pend on a combination of properties including ambient temperature, surface
characteristics and the chemistry of the material itself, the geometry is par-
ticularly relevant with regard to questions of physical storage. When all other
properties are unchanged a small body will lose heat far more quickly than
a large body of the same material, with the surface/volume ratio playing a
crucial role in defining criticality.
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In this paper, we will be concerned with the thermal ignition problem
(including the effects of oxygen consumption) for triangular and rectangular
regions and the determination of the critical size of the sample as a function of
the base boundary condition. That is, we will look at the range of possibilities
for the base boundary condition from fully insulated (Neumann condition)
through to the case where the base is set to a given temperature (Dirichlet
condition).

Gray, Merkin and Wake [10] have studied the steady-state equations for
this model but defined in the slab and showed how the steady-state temper-
ature varied with the ambient temperature. They also showed that as the
parameter related to the rate of heating was changed, the steady-state curve
crossed the ua = 0 axis leading to disjoint bifurcation curves thereby giving
the non-physical solution of negative temperature. Where Gray, Merkin and
Wake [10] used only Dirichlet boundary conditions, Sadiq and Merkin [13]
calculated the same curves using both Dirichlet and Robin boundary con-
ditions. There has been much work on the thermal ignition problem, (see
the review of Boddington, Gray and Harvey [5]) particularly defined in one
dimensional geometry (Gray and Wake [9], for example) and more recently
there has been some computational work for three dimensional geometries
(Balakrishnan, Swift and Wake [2] and [3] ).

In studying the ignition problem as defined here, we are particularly inter-
ested in steady-state solutions to the model and the determination of critical
values for physical quantities such as ambient temperature or characteristic
size. However, the time-dependent problem is also of importance as the igni-
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tion process may be understood by analysing the evolution of local behaviour
such as temperature ‘hot-spots’.

2 Mathematical model

The nonlinear pdes describing the temperature and oxygen concentration in
a self-heating material undergoing an oxidation reaction can be described by
the following equations, (see Gray, Merkin and Wake [10] for example)

ρc
∂T

∂t′
= ∇ · (κ∇T ) + QZW exp(−E/RT ) (1)

∂W

∂t′
= ∇ · (D∇W ) − ZW exp(−E/RT ) in Ω

where Ω is the domain under consideration. The boundary conditions for
this problem may be written as

κ
∂T

∂n
+ h(T − Ta) = 0 and D

∂W

∂n
+ hW (W − Wa) = 0 on ∂Ω (2)

where ∂/∂n is the normal derivative on the boundary ∂Ω, Ta is the ambient
temperature and Wa is the oxygen concentration in the surrounding air.
The physical characteristics of the material are the thermal conductivity κ,
density ρ, exothermicity Q, heat capacity c, activation energy E and the heat
transfer between the material and its surroundings h. The constant Z is the
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pre-exponential factor of the exothermic reaction and R is the universal gas
constant. The constants D and hW describe the diffusivity of oxygen in the
material and the transfer of oxygen from the material to its surroundings,
respectively. The domain Ω is characterised by a length which we will denote
by l (measured in metres). (In one dimension, l could be the length of the
interval, for example.) Implementing the following non-dimensionalisation
scheme, following Gray and Wake [9] rather than Frank-Kamenetskii [8],

u =
RT

E
, ua =

RTa

E
, w =

W

Wa
, t =

t′κ
ρcl2

,

λ =
ZQRWal

2

κE
, β =

κE

DRQWa
, γ =

κ

Dρc
, Bi =

hl

κ
, A =

hW l

D
,

the governing equations (1) reduce to

∂u

∂t
= ∇2u + λw exp(−1/u) and γ

∂w

∂t
= ∇2w − βλw exp(−1/u) (3)

and the associated boundary conditions (2) become

∂u

∂n
+ Bi(u − ua) = 0 and

∂w

∂n
+ A(w − 1) = 0 on ∂Ω (4)

A body of material releasing heat to its surroundings may achieve a safe
steady-state where the temperature of the body reaches some moderate value
and stabilises. However, when the rate of heat generation of the material
exceeds the rate of heat loss to the surroundings, then ignition can occur.
That is, there is a critical value of the ambient temperature or size of the
stored material above which ignition will occur.
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3 Numerical solution methods

For nonlinear parabolic problems such as these, the method of lines (mol)
is a powerful solution technique, where the spatial derivatives are discretised
transforming the governing pdes into a system of odes, (see Hairer, Norsett
and Wanner [11] for details.) Usually, the chemistry involved in the combus-
tion process introduces stiffness and/or multiple time scales so the availability
of robust stiff ode integrators gives an advantage to this method. For the
thermal ignition problem, the finite element method can also be used with
the advantage of the method being the ability to solve the problem in ar-
bitrary geometry, whereas the method of lines is more restricted. However,
in preparation for the calculation of solutions of more complex combustion
problems where multiple time scales are important, we have adopted the
method of lines as our solution technique.

The governing pdes (3) with boundary conditions (4) are transformed
into a system of odes using finite differences for the spatial derivatives. It
is convenient to make a linear transformation on the spatial variables (x, y)
(see Appendix A), such that similar coding techniques can be utilised for the
solution of the problems for both the triangular and the rectangular domains.

The spatial temperature nodal points are given by uj,k, j = 1, . . . , n and
k = 1, . . . , m so the energy equation in its discretised form can be written as

duj,k

dt
=

C1

2

(
1

∆x2
(uj−1,k − 2uj,k + uj+1,k) +

1

∆y2
(uj,k−1 − 2uj,k + uj,k+1)

)
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+
C2

4∆x∆y
(uj+1,k+1 − uj−1,k+1 + uj−1,k−1 − uj+1,k−1)

+ λ exp(−1/uj,k) (5)

where C1 = 1+1/a2, C2 = 1−1/a2, ∆x = 1/(n−1), ∆y = 1/(m−1) and the
equation for the oxygen concentration follows in the same manner. We then
solve a system of say s odes of the form (u, w)′ = z′ = f(z). The number of
equations to solve in the rectangular region for example is s = 2nm. When
the base angle of the triangular region is equal to 45◦, the coefficients of the
cross derivative vanish, (since a = 1), so that the form of the diffusive terms
for the triangular and square region become identical. The second order
approximation for the boundary condition is as follows,

uB = (4uB−1 − uB−2 + 2 ∆xBi ua) / (3 + 2 ∆xBi)

where uB is the boundary point and uB−1, uB−2 are interior points on the
normal to the boundary. In the α = 45◦ case, the interior points coincide
with the grid points but when α 6= 45◦, an interpolation scheme is then
required to find the boundary values.

The steady-state equations are calculated by solving f(z) = 0 as a func-
tion of a bifurcation parameter, ua or λ for example. In order to calculate
the steady-state curve, we use Newton’s method. Solving the steady-state
equations in this manner is convenient when the time-dependent solution is
also of interest, as the same function f(z) is required. In coding this problem,
(we have implemented it in Fortran 90 and Matlab), all that is required is
two subroutine calls: one to the ode integrator (to solve the time-dependent
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problem) and one to the Newton solver (to solve the steady-state problem).
The turning point on the lower stable branch of the steady-state curve deter-
mines the critical bifurcation value which is related to ignition (see Gray and
Wake [9] for example.) This point corresponds to a saddle-node bifurcation,
which could be traced out numerically using Newton’s method, for example,
although we did not use this approach.

As mentioned previously, the finite element method can also be used as
a solution technique. We have used Fastflo [7] to calculate both the time-
varying solution and the bottom stable branch of the steady-state solution
curve, as did Anderson and Zienkiewicz [1] (using the Frank-Kamenetskii [8]
variables and approximating the Arrhenius term for small ua). This solution
method serves as a useful check for the mol technique.

4 Results

Physically, we are interested in determining the bifurcation structure for ma-
terial stored in a body with triangular and rectangular cross-section with
varied base boundary conditions. That is, how does the base boundary con-
dition affect the bifurcations for fixed ambient temperature and what size
region is needed so that the material won’t ignite? Depending on storage
conditions, the material may be thermally insulated at the base, or there may
be a purely or partially conducting bottom boundary condition. Therefore,
we will vary the Biot number Bi from 0 through to ∞ to cover these possi-
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bilities. Mathematically, this is equivalent to considering the base boundary
condition to vary from the Neumann ∂u/∂n = 0, to the Dirichlet case u = ua.
Here it is assumed that the base is impermeable to oxygen, i.e. ∂w/∂n = 0,
while on the upper boundaries we put A → ∞, i.e. Dirichlet conditions. In
the Neumann case, a triangular region with base angle 45◦ is equivalent to a
square region, (using the diagonal of the square as a line of symmetry) which
therefore serves as a useful benchmark to test solutions, e.g. compare with
the table of critical values from Bowes [6].

Firstly, we will illustrate the steady-state solution curves neglecting oxy-
gen consumption, i.e. w = const = 1 and then compare these solutions to
those when oxygen is consumed. In the following examples, the ambient tem-
perature is fixed at 30◦C and λ is the bifurcation parameter. Physically, we
are interested in varying the length l of the region to determine the critical
length needed for ignition. As defined in the non-dimensionalisation scheme,
λ is proportional to l2 so in the figures following, we will show the physical
quantity l instead of λ. The Biot number Bi is also a function of l, and this
parameter also needs to be varied with l. The characteristic length l is the
length of the side of the square so that under the transformation described
in Appendix A,

√
2l is the base length of the triangle, regardless of the base

angle. Therefore, with l as the dimensional bifurcation parameter, criticality
is described for storage sizes for a fixed ambient temperature. (Equally, we
could find the critical ambient temperature for a fixed size.) The remaining
constants in the model (3) will be set at λ = 7.2× 1013l2 and β = 63, which
is characteristic of dry bagasse.
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Figure 1(a) describes the increase in critical length l as the base angle is
decreased from 45◦ to 30◦ with Dirichlet boundary conditions on all edges,
i.e. Bi → ∞. (Reading from left to right, the angles are 45◦, 35◦ and 30◦.)
Physically, as the base angle is decreased, the area of the triangle, (i.e. ef-
fectively a measure of the volume in this 2-d model), also decreases thereby
allowing heat to be conducted more easily to the boundaries. Figure 1(b)
shows the effect on the critical length as a function of the Biot number in
the bottom boundary condition (see equation (4)). As the Biot number Bi
is varied from 0 through to ∞, the critical length l of the region increases in
value. Physically, in the Bi → ∞ limit, heat can escape from all boundaries,
rather than from only the upper boundaries as in the Bi = 0 case. The
bottom branches of the steady-state curves shown in figures 1(a) and (b)
describe stable solutions and the dashed lines depict unstable solutions. The
unstable solution is important in determining the critical initial condition, or
watershed condition, which is the temperature above which the burning state
will be realized. Here, we are plotting the maximum temperature against the
dimensional bifurcation parameter l, and therefore, the burning state is guar-
anteed when u(t = 0) > umax everywhere. Problems of determining critical
initial conditions are discussed elsewhere, see [9] for example.

In the Bi = 0 case, we calculated the critical length as lcrit = 15.1m using
n = 31. In the infinite square rod case, Bowes [6] finds lcrit = 14.9m. Bowes
has made the Frank-Kamenetskii [8] approximation in the Arrhenius term
in calculating the table of critical values and we have found in associated
work that this approximation is very accurate in finding the turning point
for the steady-state curve (which describes the critical value). However, in
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Figure 1: Steady-state temperature solutions for the model (3), (4) with
no oxygen consumption where Tm is the maximum temperature measured in
◦C. (a) Bi → ∞ with base angles: 45◦, 35◦ and 30◦, (from left to right) and
(b) α = 45◦ with Bi = 0 (i.e. h = 0, zero flux) and Bi → ∞ (i.e. h → ∞,
perfectly conducting). (c) Critical length for the triangular region with base
angle α = 45◦ versus Bi (by varying the heat transfer coefficient h, i.e. lcrit/κ
fixed). This is a co-dimension 1 curve, i.e. curve of critical conditions.
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determining the watershed condition, it is found that this approximation is
inadequate. Even though the prediction of the unstable branch by [8] is
quite different to that obtained from the full model, it gives a lower and
therefore safer temperature. In addition, Bowes [6] does not include critical
values for regions with triangular cross-section, (apart from the one with
a base angle of 45◦ as it is equivalent to the infinite square rod) and also
Dirichlet boundary conditions are assumed for the temperature whereas we
can easily alter the boundary conditions to find the critical values. As shown
in figures 1(b) and (c), the characteristic scale increases by approximately
57% (15.1m to 23.7m) as the Biot number is increased from 0 to the limit
Bi → ∞. Figure 1(c) shows how the critical scale and Biot number are
related. Noting that Bi is proportional to l, then figure 1(c) shows that
Dirichlet conditions are approximated when Bi ≈ 70. Using the definition of
Bi, the ratio of heat transfer to thermal conductivity is then h/κ ≈ 3. The
relationship between the characteristic length and Biot number in figure 1(c)
takes the same form as shown in Balakrishnan, Swift and Wake [3] for the
infinite square rod where they plotted the Biot number against λ′ (the value
of λ which makes the steady-state curve disjoint).

Figures 1(a)–(c) show the steady-state solutions when oxygen consump-
tion is ignored. When the consumption and diffusion of these processes are
allowed, it can be seen in Figure 2 that the critical length of the region has
only slightly increased. In addition, the high (stable) burning temperature
is much less when oxygen is included in the model, (not shown on these
diagrams but reduced from a burning temperature greater than 1000◦C to
approximately 300◦C.) This has been shown by Gray, Merkin and Wake [10]
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Figure 2: (a) Comparison of critical length l versus base angle of triangle
for model with (upper) and without oxygen (lower) consumption. The small
triangles depict critical lengths for the base angles of 45◦, 35◦ and 30◦. (b)
Steady-state temperature solutions with oxygen consumption for Bi = 0 and
Bi → ∞ for α = 45◦, i.e. h = 0 and h → ∞ respectively (reading from left
to right).
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for an exothermic reaction in a porous slab. This is to be expected as oxy-
gen will be completely consumed in the burning state, therefore limiting the
reaction term. We also note that the temperature at which ignition occurs
(40◦C from Figure 1(a) ) is much lower than found in [10] where ignition
temperatures vary from u = 0.05 to 0.07 (in non-dimensional terms) which
corresponds to temperatures very much greater than 100◦C. They used λ
in the range of 5 × 104 to 106, where we have used a much higher value of
λ = 7.2 × 1013 l2 (relevant in particular for our ongoing interest of bagasse
piles [12].) This critical temperature is typical for hay, woodchips and other
agricultural residues stored in these sizes which have ignition temperatures
of 30 − 40◦C.

As mentioned earlier, it is often instructive to solve the time-dependent
problem to study the process of ignition. Figures 3 and 4 illustrate the spatial
temperature evolution for a non-burning and burning case respectively when
the base is insulated for both temperature and oxygen and with ambient
conditions on the upper sides. In order for the material not to burn, we must
choose a value of l corresponding to the base stable part of the steady-state
curve shown in Figure 2(b).

As our example, we take the base angle of the triangular region to be
α = 45◦ which corresponds to the left-hand steady-state curve in Figure 2(b).
Here, we choose l = 15m to illustrate the non-burning case and l = 25 m
for the burning case. The initial conditions for each case are set to the
ambient values for temperature and oxygen: u(t = 0) = ua and w(t =
0) = 1, and the boundary conditions are set to Neumann for the base and
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Figure 3: Spatial temperature evolution for the non-burning scenario. The
times are t = 87.7, 173.9 and 365 days, and advance from left to right.

Dirichlet on the sides for both temperature and oxygen. In the non-burning
case, the maximum temperature is seen to occur at the centre of the base
boundary. In this case, the triangular and square region are equivalent (as
discussed earlier), and it is known that the maximum temperature occurs
in the centre of a square with Dirichlet boundary conditions. The spatial
solutions evolve to a stable non-burning state as seen in Figure 3 with a
maximum temperature of 36.85◦C.

The burning scenario is illustrated in Figure 4. Here we see the temper-
ature initially increases in the same way as for the non-burning case (that
is, heat is generated near the centre of the base then conducted towards the
edges of the triangular region) and as the heat is lost to the environment
is exceeded by the heat produced by the reaction, the temperature within
the region continues to increase. At this point, the oxygen levels within
the region have dropped to almost zero, yet oxygen is continuously provided
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Figure 4: Spatial temperature evolution for the burning scenario. The times
are t = 183.2, 200.1, 207, 211 and 225 days, advancing from left to right and
top to bottom.

through the upper boundaries allowing continued burning near these edges.
The third frame of Figure 4 corresponds to the time at which the maximum
temperature (at this stage, approximately 130◦C) is found near each of the
centres of the upper edges. For each of the upper edges this maximum then
broadens out along the edge in both directions until in the last frame, when
the temperature is roughly constant on the upper edges, there is a further
jump to the final maximum burning temperature of about 240◦C. Figure 5
shows the maximum temperature evolving in time for the (a) non-burning
and (b) burning cases respectively. The exponential time evolution for the
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Figure 5: Evolution of the maximum temperature Tm (measured in ◦C) of
the reaction for the (a) non-burning and (b) burning state.
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non-burning state shows the temperature approaching the stable steady-state
from below. In the ignited case shown in Figure 5(b), the initial period shows
a steady increase in temperature before reaching approximately 130◦C and
then accelerating to the ignited state. The plateau in Figure 5(b) at around
130◦C followed by the sudden rise to the final ignited steady-state corre-
sponds to the time range of the frames shown in Figure 4. Here, the heat
generation of the reaction exceeds the heat loss to the environment, and
oxygen is almost completely consumed in the interior. However, burning
continues near the edges as oxygen is continuously supplied.

5 Discussion

To accurately model most combustion problems, many variables are needed
to fully describe the system’s behaviour which includes complicated reaction
kinetics and multiple time-scales. Due to the availability of robust stiff ode
integrators, the mol technique is well suited to combustion problems. The
range of domains for which this strategy can be implemented however is
rather limited, but it has recently been shown that the mol technique can
be introduced in the finite element framework as described by Berzins and
Ware [4].
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A Appendix

Let the square coordinates (x, y) be defined on x ∈ [0, 1] and y ∈ [0, 1] and
we wish to map the (x, y) coordinates to the triangular coordinates (p, q).
Define the mapping by

p =
1√
2
(x + y) q =

a√
2
(y − x)

where a = tan(α) and α is the base angle of the triangle. In (x, y) coordinates,
the diffusive term is ∇2u = uxx + uyy, so in the triangular domain,

∇2u = upp + uqq =
1

2

(
(uxx + uyy)(1 +

1

a2
) + 2uxy(1 − 1

a2
)
)

.
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