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Analysis of measured stress data in a solid
rocket motor
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Abstract

A sinusoidal regression model is fitted to stress and temperature
response data in a solid rocket motor under various thermal load-
ing conditions. Using the model statistics and measured failure data,
failure probability and reliability calculations are performed for each
loading condition via two different approaches.

∗ WSD/DSTO, PO Box 1500, Salisbury SA 5108, Australia.
0See http://anziamj.austms.org.au/V42/CTAC99/Smit for this article and ancillary

services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

http://anziamj.austms.org.au/V42/CTAC99/Smit


Contents C1306

Contents

1 Introduction C1307

2 Modelling the Data C1308
2.1 A Sinusoidal Model . . . . . . . . . . . . . . . . . . . . . . C1311
2.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . C1311
2.3 Sample Data Fits . . . . . . . . . . . . . . . . . . . . . . . C1312
2.4 Regression Model Diagnostics . . . . . . . . . . . . . . . . C1314

3 Calculation of Failure Probability and Reliability C1316
3.1 Strength Data and Statistical Characterisation . . . . . . . C1318
3.2 Failure Probability by Direct Integration . . . . . . . . . . C1318
3.3 The Second Moment Method . . . . . . . . . . . . . . . . C1320
3.4 Calculation of Reliability . . . . . . . . . . . . . . . . . . . C1321

4 Computed Results C1321
4.1 Ambient Aging . . . . . . . . . . . . . . . . . . . . . . . . C1322
4.2 Thermal Cycling . . . . . . . . . . . . . . . . . . . . . . . C1322
4.3 Thermal Shock . . . . . . . . . . . . . . . . . . . . . . . . C1323

5 Summary and Conclusions C1324

References C1325



1 Introduction C1307

1 Introduction

Solid rocket motors in storage and service conditions experience dynamic
thermal loading which, in combination with disparate thermal expansion
properties of their constituent materials, induces time varying stress distri-
butions in the propellant grain. Over a period of time such stresses can cause
local structural failures with possible catastrophic launch consequences. In
an aging rocket inventory the issue of service life thus becomes important,
and the analysis described here constitutes the probabilistic component in a
generic solid rocket motor service life program.

Probabilistic service life predictions for solid rockets has been given by
Heller [1]. They employed linear elastic theory to calculate stress and tem-
perature response as a function of input temperature in a concentric cylin-
drical geometry. Later improvements [2] incorporated propellant viscoelas-
ticity, chemical aging and stress dependent cumulative damage. The follow-
ing analysis is entirely based on measured stress and temperature response
data from an instrumented solid rocket motor subjected to various thermal
loading regimes, from benign magazine storage conditions to the aggressive
high-amplitude temperature fluctuations of thermal cycling and shock.

The data is modelled by sinusoidal regression functions, with parameter
estimates provided by Gauss-Newton iteration [3] and periodogram analysis.
Probability density functions derived directly from the regression model are
used to calculate failure probability by two different approaches, from which
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corresponding reliability estimates are generated. Applicability of the sinu-
soidal model is also studied via some linear approximate diagnostic measures.

2 Modelling the Data

Temperature and stress response measurements at critical locations of the
propellant grain [4] have yielded unevenly sampled time series data (tj, Xj),
j = 1 . . .N , representing noisy output from a dynamical system. A vast
array of techniques exists for the treatment of such data, including dynamic
reconstruction procedures [5] and simpler nonlinear regression analysis [6],
which models the data by an equation of the form

Xj = F (tj , θ) + εj , (1)

where F (tj , θ) is a response function containing unknown parameters θ and
the errors εj are independent, identically distributed (iid) random variables
with zero-mean and constant variance. Under this description Xj becomes a
random variable whose expected value is given by the response function at
any time tj . This latter approach will be applied here as a first step towards
the ultimate goal of full dynamic reconstruction from arbitrarily spaced data.
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Figure 1: Sample stress response data under ambient aging conditions
alongside regression model fits with various numbers of sinusoids.
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Figure 2: Thermal cycling stress data alongside various regression model
fits. The lower plot gives corresponding diagonal hat matrix elements hii,
which linearly approximate the deviation from non-constant variance present
in the residuals. Higher oscillation in the residual variance estimates signals
a warning against using too many model sinusoids.



2 Modelling the Data C1311

2.1 A Sinusoidal Model

Sinusoids find wide applicability in physical systems as the solution of con-
stant coefficient differential equations. On this basis the model response
function will take the form

F (t, θ) = X0 +
K∑

k=1

Ak cos(ωkt + φk), (2)

where the parameter vector θ contains a constant term X0, amplitudes Ak,
frequencies ωk and phases φk. Similar models have been successfully used
in a number of applications [7], and have proven superior to auto-regressive
models in the long term prediction of sunspot activity [8].

2.2 Parameter Estimation

In this non-Bayesian approach the parameters are treated as unknown con-
stants to be estimated from the data and as such are random variables them-
selves. Treating the model errors as normally distributed and applying the
maximum likelihood criterion [6] requires minimisation of the function

f(θ) =
N∑

j=1

[
Xj − X0 −

K∑
k=1

Ak cos(ωktj + φk)

]2

. (3)



2 Modelling the Data C1312

Rather than conduct a full nonlinear optimisation on (3) from the start, pe-
riodogram analysis is initially used to give approximate maximum likelihood
frequency estimates [9]. This involves maximising the periodogram function

PN(ω) =
1

N

∣∣∣∣∣∣
N∑

j=1

(Xj − X) exp(iωtj)

∣∣∣∣∣∣
2

,


X =

1

N

N∑
j=1

Xj


 (4)

by using Newton iteration to locate zeros of P ′(ω) in an appropriate frequency
range defined by the temporal data length. Once a first frequency has been
determined, additional components are obtained by a filtering procedure in
which the periodogram is successively recomputed after removing a pure
sinusoid at each frequency [10]. Given a set of frequencies, the remaining
parameters are obtained by linear least squares on (3), with final refinement
of the entire parameter set provided by Gauss-Newton iteration [3].

2.3 Sample Data Fits

Stress response data under ambient aging, representing controlled storage
conditions with low amplitude temperature fluctuation, is given in Figure 1
along with regression model curves of 1, 2 and 4 sinusoidal components.
None of the models offers adequate resolution of the high initial stresses for
t ≤ 5, an anomalous local minimum appears at t ≈ 80 in the 2/4 curves,
and poor resolution near t = 250 acts against the 1 component model. For
thermal cycling, stress data is given in Figure 2 alongside model fits with 2,
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Figure 3: Comparison between propellant strength and propellant/inhibitor
bond failure criteria under thermal cycling, using a 4 component regression
and 64 point Laguerre quadrature. The latter criterion produces significantly
higher failure probability during the cold cycle, displaying more consistency
with experimental observations.
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Table 1: Parameter estimates, standard errors and linearised 90% confi-
dence intervals for thermal cycling stress data and a 2 component regression
model.

Parameter Estimate θ̂j Std Error. 90% linearised limits
X0 (constant) −46.1349 1.5148 (−48.6286,−43.6411)
A1 (amplitude) 85.4911 2.2121 (81.8496,89.1326)
A2 (amplitude) 65.6205 2.1904 (62.0147,69.2263)
ω1 (frequency) 0.0945 0.0003 (0.0940,0.0950)
ω2 (frequency) 0.1204 0.0004 (0.1197,0.1211)
φ1 (phase) 0.8290 0.0558 (0.7371,0.9208)
φ2 (phase) 1.7465 0.0757 (1.6218,1.8712)

4 and 8 sinusoidal components. Although the oscillatory features in the data
have been captured, stress relaxation portions are not well resolved. The
behaviour displayed in these plots immediately demands further analysis.

2.4 Regression Model Diagnostics

Inserting the parameter estimates θ̂ into the exact regression model (1) de-
fines the residuals, rj = Xj −F (tj , θ̂), which do not inherit the iid properties
of their exact model counterparts εj . Half normal quantile plots [11] give some
positive evidence for residual normality but raise questions as the number of
components is increased. Violations of constant variance and independence
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are evident in the approximate residual covariance matrix [12]

cov(r) = σ2(I − H),

where σ2 is the true model error variance and the matrix H = AT (AAT )−1A,

with A containing the residual gradient vectors Aij(θ) =
∂rj

∂θi
. H is analogous

to the hat matrix of linear regression [12] and is readily available as a by-
product of the Gauss-Newton procedure. Diagonal hat matrix elements at
the estimated parameter values are shown in Figure 2 for various model fits
to a thermal cycling stress data sample. As more sinusoids are included in the
model the curves rise and become more oscillatory, particularly near the ends
of the time interval. Rising curves coincide with reduced residual variance as
more model sinusoids are added and increased oscillation represents greater
departures from non-constant variance.

Some statistical properties of the parameter estimates θ̂ can also be ex-
tracted by linearisation, in particular a measure of their precision. Linearly,
the maximum likelihood parameter estimates are unbiased and the associated
linear covariance matrix approximation is given by

cov(θ̂) = E
[
(θ̂ − θ∗)(θ̂ − θ∗)T

]
= σ2(AAT )−1,

in which the diagonal elements indicate mean squared parameter errors.
Standard errors, which approximate the standard deviation of the param-
eters, are then generated by replacing σ2 with the residual mean square [6],
s2 = f(θ̂)/(N − p), where p is the total number of model parameters. Corre-
sponding approximate confidence intervals [13] are given in Table 1 for a two
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component model fit to the thermal cycling stress data of Figure 2. For each
parameter the standard errors are at least one order of magnitude smaller
than the estimate, with frequency producing the lowest relative errors. Sim-
ilar behaviour is observed on the same data with a four sinusoid model but
an increase to eight components sees the appearance of some large amplitude
discrepancies, with some errors exceeding three times the corresponding es-
timate. For the ambient aging temperature data, amplitude error anomalies
start to appear in a four component model.

The above limited analysis has signalled clear warnings against the use of
too many sinusoidal regression components. Further analysis incorporating
nonlinearity is required to provide more insight into this behaviour.

3 Calculation of Failure Probability and Re-

liability

Time varying normal probability density functions for stress and temperature
response, as provided by the regression model, must be supplemented with
similar functions for the material strength in order to calculate failure prob-
ability. An experimental material characterisation program [4] has provided
failure data, from which strength pdf’s are formulated.
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Figure 4: Thermal shock stress and temperature data for 1 cycle along-
side regression model fits with 12 sinusoids. Computed instantaneous failure
probability and predicted mean strength are given over a 1 day period in
the lower plots, showing very high failure probability during the hot portion.
This is in conflict with experimental observation and the absence of a cumu-
lative damage mechanism in the current model may be partly responsible.
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3.1 Strength Data and Statistical Characterisation

Table 2 gives strength data for failure by both uniaxial tension and propellant-
inhibitor debonding. Time dependent probability density functions for the
strength are constructed by treating these sample estimates as piecewise lin-
ear functions of temperature, which has previously been characterised as a
normal random variable. The expected values of the strength mean and
variance estimates are then evaluated by integration.

An appropriate strength distribution function is provided by the Weibull
distribution [14], with a long history of application in strength of materials
and failure studies. This has probability density function

fS(S, t) =
α(t)

β(t)

(
S

β(t)

)α(t)−1

exp


−

(
S

β(t)

)α(t)

 , S ≥ 0, (5)

where the parameters α(t) and β(t) are related by a pair of nonlinear equa-
tions involving gamma functions. These can be easily solved by eliminating
β and applying Newton iteration to the resulting equation for α.

3.2 Failure Probability by Direct Integration

Both tensile and compressive stress responses have been recorded in the data
samples, and failure is deemed to occur when the absolute stress exceeds the
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Table 2: Propellant and propellant-inhibitor bond strength data, repre-
senting sample mean values taken from unaged propellant specimens at each
temperature. The error bounds represent two sample standard deviations.

Temperature (◦C) −40 20 60
Propellant strength (MPa) 0.84 ± 0.09 0.36 ± 0.05 0.34 ± 0.05
Bond strength (MPa) 0.65 ± 0.20 0.40 ± 0.05 0.31 ± 0.05

corresponding strength. Treating stress and strength as independent random
variables, failure probability at any time, pf(t), is then defined by the stress-
strength interference integral

pf(t) =
∫ ∞

0

∫ y

0
fS(S, t) dS fy(y, t) dy, (6)

where y denotes the absolute stress, with probability density fy(y, t) derived
from the stress pdf. Analytic evaluation of the inner integral leaves a semi
infinite integral which is numerically evaluated by Laguerre quadrature [15],
or the trapezoid rule. According to the Euler-Maclaurin error formula [15] the
trapezoid rule provides exceptional accuracy in this case since the integrand
is smooth with zero derivatives at the integration limits.
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3.3 The Second Moment Method

For the case in which stress and strength are independent normally dis-
tributed variables, the failure probability becomes

pf = 1 − Φ


 µ1 − µ2√

σ2
1 + σ2

2


 = 1 − Φ(γ), (7)

where Φ is the standard normal distribution function and γ is the safety
index, dependent only on the first two moments of stress and strength, µi

and σi. γ is the minimum distance from the origin of reduced variables,
x′

i = (xi − µi)/σi, to the failure line, and also coincides with the maximum
likelihood point for the joint stress/strength distribution on this line.

Second moment methods [16] utilise only the first two moments for each
design variable and work with performance functions whose sign indicates
safety and danger regions within the design variable space. The failure sur-
face is the zero contour of the performance function, and calculation of failure
probability is a constrained minimisation problem. Non-normal design vari-
ates require transformation to equivalent normal variables before perform-
ing the minimisation, however this costly computational step can often be
avoided with little penalty, as demonstrated by Shinozuka [17]. Locating the
ml point of the original distributions by Newton iteration and then trans-
forming the result back to normal variables before applying (7) gives a useful
approximation for comparison with the direct integration results.
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3.4 Calculation of Reliability

Given failure probability at any time from direct integration or the second
moment approximation it is required to calculate the corresponding reliability
R(t) over a certain time period. A representative measure of daily failure
probability pj will be defined as the time-integrated mean value

pj =
1

tj − tj−1

∫ tj

tj−1

pf (t) dt. (8)

Reliability R(n) at n days is defined as the probability of no failures occurring
during this interval, R(n) =

∏n
j=1(1 − pj). Alternatively, the cumulative

distribution function for time to failure is defined as one minus the reliability.

4 Computed Results

Computed instantaneous failure probability and time-to-failure cdf curves
for the various thermal loading regimes indicate service life expectancies for
continual loading under each condition. Real service loading will comprise
combinations from each regime, which is beyond the scope of this analysis.
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4.1 Ambient Aging

Mean strength to mean stress ratios in the vicinity of 10 translate to very
low failure probabilities in this benign loading regime. Calculations with re-
gression models containing up to 8 sinusoidal components have demonstrated
close agreement between direct integration by Laguerre/trapezoid quadrature
and second moment results, with the latter approach proving more compu-
tationally expensive due to the Newton iterations required at each time step.
After 10 years, the results indicate a probability of failure not exceeding 10−9.

4.2 Thermal Cycling

This aggressive loading induces compressive and tensile stress responses as
shown in Figure 2, with corresponding temperature response shown in Fig-
ure 3. Mean stresses reach considerably higher values than those seen in
ambient aging and the temperature fluctuation induces large variations in
mean strength. Using the maximum propellant stress as failure criterion
produces high instantaneous failure probability during the hot cycle where
mean strength is low, as calculated from a four component model with 64
point Laguerre quadrature and displayed alongside the temperature response
in Figure 3. Also shown in this figure is the corresponding result for propel-
lant/inhibitor bond failure, which features considerably less oscillation and
several high failure probability regions during the cold cycle portion, partly
due to a significantly lower bond strength at −40◦C. Experimentally, failure
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is expected during the cold cycle portion [4], which immediately suggests the
latter failure criterion as the more appropriate. Time-to-failure cdf curves
over the one year period are shown in Figure 3 for both failure criteria, indi-
cating unacceptably high values after one year of sustained thermal cycling.
Stress dependent cumulative damage, which has not yet been incorporated
into the current model, is also expected to play an important role.

4.3 Thermal Shock

The most aggressive thermal loading regime features short duration cycles
of less than one day between 55◦C and −40◦C. This is expected to be far
more severe than any real service conditions and induces relatively rapid
failure in the laboratory. Stress and temperature response data for the first
of a series of cycles is shown in Figure 4 alongside regression model fits
with twelve sinusoidal components. Considering both propellant strength
and propellant/inhibitor bond strength produces very high instantaneous
failure probability in the hot portion followed by a sudden decline, essentially
following the mean strength behaviour, as shown in Figure 4, which gives
computed results over one day. This conflicts with experimental results, in
the sense that failure is observed during the cold portion [4], and indicates
the need for further physical model refinement. As for thermal cycling, the
effect of cumulative damage on this behaviour is of particular interest.
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5 Summary and Conclusions

A sinusoidal regression model has been used to analyse measured stress and
temperature response data at critical structural locations of a solid rocket
motor subjected to various thermal loading regimes. Corresponding struc-
tural failure probability and its temporal evolution have been calculated from
the model in conjunction with measured failure data. While the computed
results show intuitive agreement with life expectancies under the given load-
ing patterns, several important issues concerning the model fit have emerged.
Resolution of stress relaxation regions is not entirely adequate with pure si-
nusoids and improvements will be sought by the incorporation of exponential
damping terms. Another question demanding further attention involves the
actual number of sinusoidal components to be used. Initial warnings against
the use of too many components have been provided by linear diagnostic mea-
sures of the parameter and residual behaviour but further nonlinear analysis
will be necessary to provide clearer answers. Stress-dependent cumulative
damage also needs to be considered to provide a strength reduction mecha-
nism.

This analysis represents a first step in probabilistic service life assessment
from measured response data and will serve a useful purpose in the develop-
ment of more elaborate techniques. Ultimately, full dynamic reconstruction
will be sought, allowing studies of the response behaviour under any desired
thermal loading profile.
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