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Hermite cubic spline collocation methods with
upwind features
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Abstract

In this paper, we present an eigenvalue analysis of the first-order
Hermite cubic spline collocation differentiation matrices with arbitrary
collocation points. Some important features are explored and the
method is compared with some other discrete methods, such as finite
difference methods. A class of spline collocation methods with upwind
features is proposed for solving singular perturbation problems.
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1 Introduction

The spline collocation method has been extensively applied in numerical pdes
and odes [2, 3] due to its ease of implementation and high-order accuracy.
Collocation at Gauss points produces a high-order accuracy for many physical
problems. However, for those convection-dominated flows and perturbation
problems, collocation at Gauss points can produce bad oscillations.

A well-known technique for such problems is an upwinding scheme which
can be well-posed for finite difference and finite element methods. Collocation
at Gauss points produces many features of central finite differences [7] which
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is known not to be efficient for such problems. Collocation with upwinding
feature is of high interest.

Collocation methods with upwinding features were proposed by Allan and
Pinder [1] for a convection-dispersion transport equation. In their approach,
Hermite cubic spline collocation with some nonsymmetric collocation points
are used and this is shown to produce oscillation-free solutions to the linear
problem. Ringhofer [6] considered a class of quasilinear singular perturbed
boundary value problems by using spline collocation with some specified
nonsymmetric collocation points. The stability of his method was analysed.
Mahmood and Osborne proposed a noncompact scheme for the reduced equa-
tion of such singular perturbation problems. The scheme is stable when some
nonsymmetric collocation points are applied. Some upwinding features for
pseudospectral collocation methods were studied by Huang and Sloan [4].
Numerical results suggest that the eigenvalues of the first-order differentia-
tion matrix are located in the left-half plane. This is the main feature of
upwinding scheme.

A simple example to be considered here is

εuxx − ux + d(x) = 0 (1)

subject to appropriate boundary conditions. This model problem has been
considered in those previous works and has its roots in many physical prob-
lems. Ringhofer [6] and Huang and Sloan [5] considered the spatial problem
and Allan and Pinder [1] examined the corresponding time-dependent prob-
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lem. A numerical method applied to (1) gives the discrete form

εT2u − pT1u + d = 0 (2)

where T1 and T2 are the first-order and the second-order differentiation ma-
trices of the method used. A linear stability analysis shows that the stability
depends upon the eigenvalues of the matrix

M = εT2 − pT1 . (3)

For ε sufficiently small, the scheme is stable when all the eigenvalues of T1 are
located in the left-half plane. This requirement is satisfied by the classical
upwinding finite difference methods and upwinding finite element methods.

In this paper, we consider Hermite cubic spline collocation methods which
possess such upwinding features. Numerical investigation of the stable col-
location point set in which all eigenvalues of the first-order differentiation
matrix are located in the left-half plane was presented in [8]. However, no
theoretical analysis for the stable collocation point set has been presented.
The primary purpose of this paper is to present an eigenvalue analysis of
the first-order Hermite cubic spline collocation differentiation matrix. Based
on this analysis, we present the collocation point set in which the Hermite
cubic spline collocation method is stable. These stable collocation methods
are applied for solving some simple perturbed problem and compared with
classical collocation methods based on Gauss points.
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2 Hermite cubic collocation methods

First, we describe briefly the spline collocation formulation. Let ΠN =
{xi}N+1

i=1 be a uniform mesh on [0, 1] so that h = xi+1 − xi, i = 1, . . . , N .
The Hermite cubic approximation v(x) is defined by

v(x) := ξ1(s)ui + hξ2(s)u
′
i + ξ3(s)ui+1 + hξ4(s)u

′
i+1 s ∈ [0, 1] (4)

on each element [xi, xi+1] (i = 1, 2, . . . , N). Here, ξi(s), i = 1, 2, 3, 4, are the
standard shape functions. Let

Ω = {(x, y) | x < y; x, y ∈ (0, 1)} ∈ RI 2 (5)

and we denote the collocation points by ΠCOL := {xc
ij}N,2

i,j=1, where

xc
i1 = xi + σ1(xi+1 − xi), i = 1, 2, . . . , N ,

xc
i2 = xi + σ2(xi+1 − xi), i = 1, 2, . . . , N

(6)

and (σ1, σ2) ∈ Ω.

We apply the spline collocation method for solving (1) with Dirichlet
boundary conditions. This spline collocation discrete system is given by

εv′′(xc
il) − pv′(xc

il) = −d(xc
il) , i = 1, 2, . . . , N ; l = 1, 2 . (7)

In matrix form, we have
εA2ū − pA1ū = d . (8)
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where Ak denotes the kth-order collocation differentiation matrix, k = 0, 1, 2,
which is the approximation to the kth-order differential operator u(k), k =
0, 1, 2 and

(Akv)l = v(k)(xc
ij), k = 0, 1, 2; j = 1, 2; i = 1, 2, . . . , N . (9)

The relation between l and i, j and the corresponding structure of Ak depends
upon the ordering of the collocation points and the unknowns for v(x). For
the natural ordering l = 2(i − 1) + j, we set

ū = [u1, hu′
1, u2, hu′

2, . . . , uN , hu′
N ]T ,

ΠCOL = {xc
11, x

c
12, x

c
21, x

c
22, . . . , x

c
N1, x

c
N2} .

(10)

Let v = (v(xc
11), v(xc

12), v(xc
21), . . . , v(xc

N2)). Then v = A0ū and

εT2v − pT1v = d (11)

where T1 = A1A
−1
0 and T2 = A2A

−1
0 .

3 Stable collocation points

We consider the following eigenvalue problem

A1v = λA0v (12)
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where Ak denotes the k-order Hermite spline collocation differentiation ma-
trix with respect to Dirichlet boundary conditions. Theoretical analysis for
the eigenvalue problem with symmetric collocation points and numerical
investigation for nonsymmetric collocation points were studied in [8]. Let
λ(A−1

1 A0) denote the eigenvalues of A−1
1 A0. Given ΠN these are dependent

upon the choice of collocation point (σ1, σ2). The stable collocation point
sets are defined by

SD+

1 = {(σ1, σ2) | <(λ(A1A
−1
0 )) > 0}

SD−
1 = {(σ1, σ2) | <(λ(A1A

−1
0 )) < 0} .

(13)

Some properties of the first-order spline collocation differentiation matrix are
given in [8]. These have been obtained by using a so-called local condensation
technique [2, 5, 9, 10].

Lemma 1 [8]

det(A1 − λA0) = h−2N det(CD(λ)) · det(tridiag(a1(λ), b1(λ), c1(λ))) (14)

where

CD(λ) =


 ξ

′
1(σ1) − λξ1(σ1) ξ

′
3(σ1) − λξ3(σ1)

ξ
′
1(σ2) − λξ1(σ2) ξ

′
3(σ2) − λξ3(σ2)


 , (15)



3 Stable collocation points C1386

and

a1(λ) = −(1 − σ1)(1 − σ2)(σ2 − σ1)×
× [(1 − σ1)(1 − σ2)h

2λ2 + 2(2 − σ1 − σ2)hλ + 6]

b1(λ) = (σ2 − σ1) {[2σ1σ2(1 − σ1)(1 − σ2) + σ1(1 − σ1) + σ2(1 − σ2)]h
2λ2

− 2(1 − σ1 − σ2)(1 + σ1 + σ2 − 2σ1σ2)hλ
+ 6(1 + 2σ1σ2 − σ1 − σ2)}

c1(λ) = −σ1σ2(σ2 − σ1) (σ1σ2h
2λ2 − 2(σ1 + σ2)hλ + 6) .

(16)

By noting some simple properties of tridiagonal Toeplitz matrices, (14)
can be rewritten by

det(A1 − λA0) = h−2N det(CD(λ)) ·
N−1∏
j=1

(
b1(λ) + 2

√
a1(λ)c1(λ)cos

jπ

N

)
.

(17)

Consider the two special eigenvalues which satisfy the following quadratic
equation

det(CD(λ)) = (σ1 − σ2)(γ0 + γ1hλ + γ2h
2λ2) = 0 (18)

where
γ0 = 6σ1σ2 + 2 − 3σ1 − 3σ2

γ1 = (1 − σ1 − σ2)(2σ1σ2 − σ1 − σ2)
γ2 = σ1σ2(1 − σ1)(1 − σ2) > 0 .

(19)
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Let pD(σ1, σ2) := γ2
1 − 4γ0γ2. Then by (19)

pD(σ1, σ2) = (1 + 2σ1σ2 − σ1 − σ2)×
× [2σ3

1σ2 + 2σ1σ
3
2 − 8σ2

1σ
2
2 − σ3

1 − σ3
2 + 5σ2

1σ2 + 5σ1σ
2
2 − 6σ1σ2 + σ2

1 + σ2
2]
(20)

If pD(σ1, σ2) < 0, (18) has two complex roots and the real parts of these
two roots are positive when γ0 < 0. For those collocation points satisfying
pD(σ1, σ2) ≥ 0, (18) has two positive real roots (or two negative real roots)
when γ0 > 0 and one positive and one negative roots when γ0 < 0. Since
pD(σ1, σ2) > 0 when γ0 < 0, we let

UD = {(σ1, σ2) | γ0 < 0} (21)

denote the unstable collocation point set. A plot of the boundaries of these
collocation point sets is given in Figure 1. It follows that UD is an unstable
collocation point set just by considering the two special eigenvalues. Then
UD is also an unstable region for (12). The other eigenvalues are determined
by

N−1∏
j=1

(
b1(λ) + 2

√
a1(λ)c1(λ)cos

jπ

N

)
= 0 . (22)

The stable collocation point sets for the eigenvalue problem (12) are described
in the following theorem. The proof can be obtained by using Maple software
for (22).
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Figure 1: The collocation point sets for Dirichlet problems.
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Theorem 2 The stable collocation point sets are given by

SD+
= {(σ1, σ2) | γ0 < 0 ; σ1 + σ2 > 1}

SD−
= {(σ1, σ2) | γ0 < 0 ; σ1 + σ2 < 1} .

(23)

Remarks: Our theoretical analysis in Theorem 2 confirms the numerical
tests in [8]. In fact, the unstable and stable regions depend upon the two
special eigenvalues which satisfy (18). It should be noted that CD(λ) is the
characteristic polynomial of (12) when N = 1, i.e., one element case. Thus
the unstable region is independent of the step size h. Applying our analysis
both to the convection-dispersion transport equations and the perturbation
problems with ε small enough, the schemes with collocation points in SD+

(or SD−
) are stable in SD+

(or SD−
) and unstable in UD. In the latter case,

there exist two eigenvalues with positive and negative real parts, respectively.
The size of their real parts is O(1/h).

When ε � h, the stability of (11) depends upon the ratio of the real part
and imaginary part of the eigenvalues of (12). We define

r(σ1, σ2) = min
<(λj(A1A

−1
0 ))

=(λj(A1A
−1
0 ))

. (24)

It is difficult to find the optimal collocation point in the stability viewpoint.
We have plotted the contours of r(σ1, σ2) in Figure 2. Some features can be
observed. When collocation points are chosen near by the symmetric case
(σ1 + σ2 = 1) and the case σ1 = σ2, the scheme is less stable. In the area
near the point (0, 0.125), r(σ1, σ2) has its maximum which is larger than 2.
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Figure 2: The collocation point sets for Dirichlet problems.
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4 Numerical examples

Finally, we present the results of calculations for the perturbed problems
without turning points considered in [4]. We only test the stability to confirm
our theoretical analysis for the Hermite cubic collocation method. In all
examples, the error is measured by

‖e‖∞ = max
i

|v(xj) − u(xj)| (25)

where v(x) and u(x) denote the numerical solution and the analytic solution
(if available). All numerical experiments are performed on a Sun sparc

Station 1+ in double precision.

4.1 Example 1

We consider the singular perturbation problem

4εuxx − 2ux = 1+x
2

x ∈ (−1, 1)
u(−1) = u(1) = 0

(26)

which was studied by Huang and Sloan [4] by using a so-called upwind-
ing pseudospectral collocation methods. It has been shown in [4] that the
standard pseudospectral collocation method produces a bad oscillation when
ε < 10−3. Here we use the Hermite cubic spline collocation method for solv-
ing this perturbation problem. Numerical results are given in Table 1 with



4 Numerical examples C1392

several different collocation points, including the Gauss points. It is obvi-
ous that when ε ≤ 10−3, the numerical solutions obtained by the collocation
method using Gauss points are unacceptable. We plot the numerical results
obtained by the upwinding collocation method based on Hermite cubic spline
and the corresponding orthogonal collocation method in Figure 3 and Fig-
ure 4, respectively. The numerical results are improved significantly by using
the nonsymmetric collocation points with upwinding features. The colloca-
tion method with the collocation point (0.875, 0.95) gives the best results.
The accuracy is independent of the value of ε. These numerical observations
are in good agreement with our theoretical analysis.

Table 1: The numerical comparison for Example 4.1 (N = 16)
Collocation point ‖e‖∞ ‖e‖∞ ‖e‖∞ ‖e‖∞ ‖e‖∞

(σ1, σ2) ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

Gauss point 3.104D-5 0.7409D-2 0.4075D0 0.4639D0 0.4683D0
(0.2, 0.8) 1.615D-4 6.664D-2 0.4047D0 0.4637D0 0.4682D0

( unstable )
(0.6, 0.9) 5.656D-2 2.873D-2 3.613D-2 3.694D-2 3.711D-2

(0.875, 0.95) 4.765D-3 1.1341D-2 2.2963D-3 3.581D-3 3.741D-3
FD (upwind) 9.774D-3 6.719D-2 4.983D-2 9.850D-3 5.444D-3
(N = 100)

FD (central) 1.227D-4 1.693D-2 0.3327D0 0.4986D0 2.527D0
(N = 100)
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Figure 3: Numerical comparison for Example 4.1 (exact solution: –; up-
winding collocation solution: +).
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Figure 4: Numerical comparison for Example 4.1 (exact solution: –; or-
thogonal collocation solution: -·-;).
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4.2 Example 2

The second example is a perturbation problem with variable coefficients [4]

4εuxx + 2p(x)ux = f(x, ε) x ∈ (−1, 1) (27)

where p(x) = (3/2 + x/2)3, and f(x, ε) and the boundary conditions are
chosen such that the exact solution of (27) is

u(x) =
1

p(x)
exp

(
− 1

2ε

∫ x

−1
p(t) dt

)
+ exp

(
−x + 1

4

)
. (28)

Numerical results are given in Table 2. These reinforce conclusions obtained
for Example 4.1.
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