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Abstract

Computational methods for efficient seasonal ensemble prediction
with a coupled ocean-atmosphere model, consisting of a global atmo-
sphere and a Pacific basin ocean, are described. Nonlinearly modified
Lyapunov vectors, termed bred modes, and finite time normal modes,
termed cyclic modes, that grow fastest over a month are found to
be suitable ensemble perturbations. The skill of seasonal ensemble
prediction is examined in hindcast simulations for the period 1980 to
2000. In general, ensemble mean forecasts are significantly more skilful
than the control forecasts. We find that cyclic mode perturbations
are generally more effective than bred vectors in improving ensemble
forecasts.
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1 Introduction

Coupled ocean-atmosphere variability in the Pacific Ocean hemisphere as-
sociated with the quasi-periodic phenomenon known as El Niño-Southern
Oscillation (enso) has a major impact on global climate variations over sea-
sonal to interannual time scales. It also significantly affects the predictability
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in the tropical and subtropical regions. Recently, ensemble prediction methods
were employed to improve the forecasts of weather [1, 2] and seasonal climate
variations [3]. Here we examine the properties of coupled ocean-atmosphere
instabilities in the model described in the associated article by Frederiksen et
al. (2013) [4] (hereafter ffb) and relate these properties to the boreal spring
predictability barrier for seasonal prediction [3, 5, 6]. A second major aim is
to examine whether ensemble forecasts with bred vectors or cyclic modes as
ensemble perturbations yield improvements over control forecasts with the
coupled ocean-atmosphere model of ffb. We examine the extent to which the
improvements in prediction with ensemble forecasts depend on the number
and type of ensemble perturbations. As well, we examine the variability in
forecast skill during the enso cycle and during the average annual cycle.

In Section 2 we outline the coupled ocean-atmosphere model used in this
study. Section 3 presents the theoretical approach employed for generating
ensemble perturbations and Section 4 describes the method of obtaining the
analyses for initialising the forecasts between 1980 and 2000. In Section 5 the
growth properties of ensemble perturbations are described while in Section 6
the skill of ensemble and control forecasts is described. Concluding remarks
are presented in Section 7.

2 Coupled ocean-atmosphere model

The model used in this study has a global atmosphere coupled through surface
wind stresses and heat fluxes to a Pacific basin ocean extending from 90◦S
to 90◦N (see Figure 1 of ffb [4]), and with no through flow in the southern
ocean. The resolution of both components corresponds to a model grid of
circa 2.3◦ latitude and 3.75◦ longitude. Full details of the model are given
by ffb.
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3 Theoretical approach

3.1 Calculation of bred vectors and cyclic modes

The bred vector coupled instabilities employed in this article were obtained
using the breeding method described by Toth and Kalnay [1] and Frederiksen
et al. [2]. In the breeding method a small perturbation is added to the initial
conditions for a given forecast. The unperturbed control and the perturbed
forecasts are then performed. After a period of time the differences between
the perturbed and control forecasts are calculated. The perturbation is then
scaled to a suitable small amplitude, and control and perturbed forecasts are
performed from the analysis and perturbed analysis at the new time. The
process is continued and generally for several pairs of perturbations with
equal and opposite structures at the time of each rescaling. Frederiksen et
al. [2, Figure 1] provide a schematic of the method.

If perturbations are kept suitably small and the restart periods sufficiently
short, then for a deterministic dynamical system the perturbation will eventu-
ally converge to the fastest growing Lyapunov vector [1, 2]. However, in our
studies we are interested in the large scale slower growing nonlinearly coupled
modes of the ocean-atmosphere system. For this reason the restart time is
taken to be one month, which allows the large scale coupled modes to be gen-
erated [3]. We are primarily interested in modes for which there is a significant
equatorial ocean perturbation that is coupled to a large scale atmospheric
perturbation. For this reason we mask the ocean perturbation by cos8φ,
where φ is latitude, at each monthly restart, but leave the atmospheric pertur-
bations unchanged. This mask was chosen, after experimentation, to localize
the ocean perturbations in the equatorial region. All the perturbation fields
are rescaled proportionally so that the 50m root mean square temperature
is 0.1◦C in the nino3+ region at each restart time. Here the nino3+ region
ranges from 90◦W to 150◦W longitude and from 10◦S to 10◦N latitude. The
scaling factor was chosen to optimize the skill of the ensemble forecasts.
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Cyclic modes are calculated in the same way as bred vectors but are iterated
several times before being employed in the perturbed forecasts. That is, in
each month the evolved perturbations are rescaled to the standard magnitude
and returned to the beginning of the month for the next iteration of growth.
Therefore, the cyclic modes are more characteristic of the flow regime of the
particular month than are bred vectors, particularly if there are rapid changes
in the flow regimes, such as in boreal spring. In this study, the cyclic modes
are obtained by three iterations, which is sufficient to significantly improve
the ensemble forecasts.

3.2 Growth rates and relative amplification factors

We denote by x(τ, t) a vector of grid point values of any of the atmospheric or
oceanic fields of a bred vector or cyclic mode initiated at time t and evolved
to time τ+ t . Further, we denote the root mean square of the vector x(τ, t) ,
which is our L2 norm, by ‖x(τ, t)‖ . Then, with the initial time τ0 = 0 , the
total amplification factor of a perturbation initiated at t and evolved between
t+ τ0 = t and t+ τ is

A(τ, t) = ‖x(τ, t)‖/‖x(0, t)‖ . (1)

We then define the local total growth rate ω̃i(t) , averaged over a time
interval T30 that we take to be 30 days, by

ω̃i(t) =
1

T30
logA(T30, t) . (2)

Further, we define the grand average, or global growth rate, ωi as the average
value of ω̃i(t) as t ranges between t0 = 0 and Tmax , the last initial condition
for the forecasts. Thus,

ωi =
1

Tmax

∫ Tmax

0

dt ω̃i(t) . (3)
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We also define the local relative growth rate by

ω̂i(t) = ω̃i(t) −ωi . (4)

The local relative growth rate is related to R(t), the relative amplification
factor, through

R(t) = exp
(∫ t

0

ds ω̂i(s)

)
, (5)

where R(0) = 1 . We need to examine the average local total growth rates
and amplification factors over several years, 〈ω̃i(t)〉 and 〈R(t)〉 , respectively.

4 Analysis period

The forecasts described in this article start from analyses with validity dates
spanning 1 January 1980 to 1 December 2000. This period includes the major
El Niño event of 1997 followed by the La Niña of 1998. The analyses are
determined using a nudging scheme for data assimilation described by ffb [4]
who noted the scheme produces flow fields that are close to observations but
that are also consistent with the model; as a consequence, there are no shocks
when the model is started from these analyses.

5 Bred vector and cyclic mode coupled
instabilities

The global growth rates of the bred vectors and cyclic modes are very similar
at 0.02 day−1 , corresponding to an e-folding time of 50 days. Figure 1 shows
the average local total growth rate for the temperature fields of bred vectors
(blue), and cyclic modes (thin black), and the relative amplification factor of
cyclic modes (thick black), based on the global norm in the atmosphere and
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ocean. The results are based on an average over eight perturbations and the
monthly integrations are started every three days between 1 January 1992
and 1 December 1999. The maximum relative amplification factor for both
the cyclic mode (Figure 1) and for the bred vector (not shown) occurs
in early boreal spring and has a magnitude of nearly twice the value in
January. It then decreases in late boreal spring, attaining low values in
boreal autumn and generally increasing values in winter. The minimum in
the relative amplification factor occurs between October and December. The
characteristics of the bred vector and cyclic mode shown in Figure 1, including
the large amplitudes of the relative amplification factor in the first half of the
year, the small values in boreal autumn and the increases in boreal winter,
are very similar to those found by Frederiksen and Branstator for the finite
time normal modes [5, Figure 4] and for the finite time principal oscillation
patterns [6, Figure 5]. Again, we expect that the seasonal variability in the
basic state circulation is responsible for the seasonality in the growth and
amplitude of the coupled instabilities. In boreal spring the oceanic growth
rates of the cyclic modes are larger than those of bred vectors. This is
presumably because the cyclic modes are better able to capture the monthly
instabilities when the basic state is changing rapidly in boreal spring. In
turn, this may explain why cyclic modes result in greater improvements in
ensemble forecasts, as discussed in the next section.

6 Seasonal ensemble forecasts

We performed one year forecasts with the coupled ocean-atmosphere model,
mentioned briefly in Section 2 and in more detail by ffb [4]. These forecasts
were started on the first day of each month between 1 January 1980 and
1 December 2000. The control forecasts start from analyses obtained from
the nudging method of data assimilation, as described in Section 4 of ffb.
For the ensemble forecasts, the control initial conditions are perturbed by the
bred vectors or cyclic modes obtained as described in Section 3. Ensemble
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Figure 1: Bred vectors (blue), cyclic modes (thin black) and (Left) local
total growth rate (day−1, thick black) at different atmospheric pressures;
and (Right) relative amplification factor of cyclic mode (thick black) for
temperature fields at different ocean depths.
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forecasts were performed with 2, 8, 32 and 64 paired perturbations; each
member of a pair had the same structure but opposite sign. This ensures
that the initial conditions of the ensemble mean are identical to those of the
control. Our focus is on the skill of forecasts in predicting the 50m ocean
temperature for the nino3+ region.

6.1 Average forecast error growth

We first consider how the root mean square (rms) forecast errors (forecast
minus analysis) of the 50m ocean temperatures of the nino3+ region grow,
on average, in 12 month ensemble and control forecasts. Figure 2(a) shows
the mean amplification of rms errors over 12 months, where these errors
were averaged over all forecasts which were started once a month between
1 January 1980 and 1 December 2000; the ensemble results are based on
eight members. For forecasts longer than about two months the errors of the
ensemble mean forecasts are smaller than for the control forecasts. Moreover,
the relative improvement in the ensemble mean forecasts over the control
grows with time until the errors saturate towards the end of the twelve month
period. The sensitivity of the skill of ensemble forecasts to the number
of members in the ensembles is deduced from Figure 2(b), which shows
the difference between the control and ensemble mean forecast errors as a
function of month and of the number of ensemble members. As expected, the
larger the number of members the better the ensemble forecast, on average.
Nevertheless, the improvement with increasing number of ensemble members
saturates; there is little additional gain in using 64 members compared with
using 32 members. Also, for forecast lead times between two and eight
months ensemble prediction with eight cyclic modes is more skilful than even
with 64 bred vectors.
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(a)

(b)

Figure 2: (a) Growth of rms errors of 50m ocean temperatures (◦C) in the
nino3+ region as function of month (based on eight ensemble members).
(b) Corresponding control minus ensemble mean errors for different numbers
and types of ensemble perturbations.
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6.2 Error growth variability during ENSO cycle

We examine the variability of rms error growth during the period between
1 January 1990 and 1 December 2000 which includes the large El Niño event
of 1997 and the La Niña event of 1998. Figure 3 shows the rms errors in
50m ocean temperatures in the nino3+ region for 12 month forecasts started
each month. During this period there is considerable variability in rms errors of
both control and ensemble mean forecasts, based on eight ensemble members,
using cyclic modes. In particular, there is large variability in error amplitude
during the El Niño event of 1997 and the subsequent La Niña event of 1998.
Both the control and ensemble mean forecasts have difficulty in capturing
the El Niño regime transition. Nevertheless, errors in the ensemble mean
forecasts are generally reduced in comparison with the control forecasts and
this reduction also applies to forecasts through the El Niño regime transition.
Once the El Niño conditions are established then errors in both the control
and ensemble mean forecasts are generally reduced. Forecasts through the
La Niña transition also tend to be less skilful than in more quiescent periods
with the ensemble mean forecasts having generally smaller errors than the
control.

6.3 Seasonal variability of error growth

We examine the variability of forecast error growth during the annual cycle.
We obtain the mean errors in a given month by averaging the forecasts errors
in that month over all the years between 1990 and 2000. We display the
results in Figure 4, which shows the annual cycle of error growth in the
ensemble mean, based on eight cyclic mode ensemble members, and control
forecasts, as well as the control minus ensemble mean difference, for rms
errors in 50m ocean temperatures in the nino3+ region. Figure 4 shows the
general tendency of errors to increase with time, as expected, and that there
are peaks in amplitudes of errors for forecasts verified in boreal spring. The
forecasts’ error amplitudes show the characteristic boreal spring predictability
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Figure 3: Growth of rms errors of 50m ocean temperatures (◦C) in the
nino3+ region as function of forecast month, starting every month between
January 1990 and December 2000 for (a) the control, (b) the ensemble mean
(based on eight cyclic mode members) and (c) control minus ensemble mean.
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barrier [3, 5, 6]; this is also consistent with the coupled ocean-atmosphere
instabilities peaking in boreal spring, as shown in Figure 1. Figure 4(c) shows
that the ensemble mean forecasts generally perform better than the control
forecasts, including during boreal spring.

7 Conclusions

We applied ensemble prediction methods, in which the control initial conditions
are perturbed by coupled ocean-atmosphere disturbances, within the coupled
ocean-atmosphere model of Frederiksen et al. [4]. The bred vectors and cyclic
modes have global growth rates of 0.02 day−1 corresponding to an e-folding
time of 50 days. However, the local growth rates of these perturbations are
not uniform but vary with time. We argued that this is the cause of the
seasonal variablity in forecast skill.

We performed one year control and ensemble forecasts with the coupled
ocean-atmosphere model. The control forecasts were initiated on the first day
of each month between 1 January 1980 and 1 December 2000 from analyses
obtained using the nudging method of data assimilation. For the ensemble
forecasts we considered 2, 8, 32 and 64 perturbations. We focused on the skill
of predicting the 50m ocean temperature for the nino3+ region. We find that
for forecasts longer than about two months the root mean square errors in the
ensemble mean forecasts are smaller than for the control based on averages
over all the forecasts started between 1 January 1980 and 1 December 2000.
There is considerable variability in the skill of both control and ensemble
forecasts during the period studied. This is particularly the case during
the period between the start of the El Niño event of 1997 and the La Niña
of 1998. Ensemble mean forecast skill improves with increasing number of
perturbations but the improvement saturates for larger number of members,
with little additional gain in using 64 members compared with 32. We found
that ensemble mean forecasts based on eight cyclic modes are more skilful in
two to eight month forecasts than those based on 32 to 64 bred vectors.
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Figure 4: As in Figure 3 but for averages of all forecast errors in a given
month.
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We argued, on the basis of the results of Frederiksen and Branstator [5, 6] and
our findings in this article, that we expect a contributing cause of the boreal
spring predictability barrier is that large scale atmospheric teleconnection
patterns and instabilities peak in boreal spring.
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