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Asymptotic approximations for vibrational
modes of helices
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Abstract

The free vibrations in the plane normal to the helical axis are stud-
ied under the assumption that the helical pitch is small. Asymptotic
approximations for eigenvalues and eigenfunctions are derived for both
small and large numbers of helical turns. The analytic approximations
reveal interesting features of helix vibrations and the connection be-
tween the vibrational modes of a helix and the flexural modes of a
curved beam. Comparison with numerical calculations shows that the
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approximations derived cover with sufficient accuracy a wide range of
number of helical turns.
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1 Introduction C1400

1 Introduction

The vibrations of helices have important engineering applications and con-
tinue to attract the attention of researchers [1, 2, 3, 4, 5, 6]. Three-dimen-
sional equations for the vibrations of helices are generally too difficult to
solve analytically and natural frequencies are usually calculated by various
numerical techniques. The importance of simplified models that provide a
deep insight into different effects inherent in helix vibrations has long been
recognised [2, 3, 4].

A simplified model presented in this paper considers a helix as a pla-
nar uniformly curved beam vibrating in the plane of beam curvature and is
different from published simplified models [2, 3, 4]. Such a model gives an
adequate approximation to the vibrations of a helix provided that the helical
pitch is small compared with its diameter and that motion parallel to the
helical axis is neglected. We start with flexural modes of a moderately curved
planar beam and then follow their development as the non-dimensional cur-
vature of the beam increases to arbitrarily large values. A similar approach
has been used in the authors’ earlier papers[7, 8] for beams with relatively
small curvature and revealed many interesting features of mode transition
accompanying an increase in beam curvature. Using this approach, it has
proved possible to reveal the transformation of modes that occurs with in-
crease in number of helical turns and the association of the modes of a helix
with the modes of a curved beam.
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The analysis of the present paper consists of two parts:

1. analysis of vibrational behaviour for a small number of helical turns;

2. analysis of vibrational behaviour for an arbitrarily large number of
helical turns.

In both cases, simple analytic approximations for non-dimensional eigenvalue
and mode shape are obtained. An interesting feature of the vibrational be-
haviour for small numbers of helical turns, revealed by the analysis, is the
occurrence of a minimum of the non-dimensional eigenvalue at a value of
the opening angle that is a function of the mode number. This minimum
relates to the minimum of strain energy. The analysis also reveals that there
are two different types of vibrational behaviour for a large number of helical
turns, characterised by quite different mode shapes. These modes, and their
succession in the frequency spectrum, are examined. Numerical calculations
illustrating the vibrational behaviour at different ranges of opening angle and
confirming the validity of the analytical approximations are presented.

2 Governing equations

As mentioned in the introduction, the equations for in-plane vibrations of a
uniformly curved beam with large opening angle can be used to approximate
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the vibrations of a helix, provided that the helical pitch is small compared
with its diameter and that the motion in the direction of the helical axis
is neglected. The equations for the free in-plane vibrations of a uniformly
curved beam in non-dimensional form can be written as [7]

(u′ − αv)′ + εΛu = 0, (1)

−ε(α4v + 2α2v′′ + v′′′′) + (u′ − αv)α + εΛv = 0, (2)

where u and v are the non-dimensional tangential and normal displacements,
α is the opening angle, which is the ratio of beam length l to its radius
of curvature R, Λ is a non-dimensional eigenvalue and ε is a slenderness
parameter of the beam, defined by Λ = ρl2ω2/(εE), ε = h2/(12l2), where h
is the beam thickness, ρ is the density, E is Young’s modulus and ω is the
frequency. Primes denote differentiation with respect to the non-dimensional
co-ordinate s̄ = s/l measured along the beam centreline. For the sake of
clarity, it is assumed that the beam has rectangular cross-section and that
the ends of the beam are clamped, so that

u = 0 at s̄ = 0, 1, (3)

v = v′ = 0 at s̄ = 0, 1. (4)

In what follows, we take advantage of the fact that when ε is small and the
opening angle α is sufficiently large, the equations (1–4) can be approximated
by the equation of inextensional vibrations [9]

v′′′′′′ + 2α2v′′′′ + (α4 − Λ)v′′ + Λvα2 = 0. (5)
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with boundary conditions

v = v′ = v′′′′′ + 2α2v′′′ = 0 at s̄ = 0, 1. (6)

3 Approximations at small number of helical

turns

In has been shown in [8] that after the sharp increase in eigenvalues and
transformation of mode shapes that accompanies an increase in beam curva-
ture and occurs at small values of the beam opening angle, a stage follows
where there is virtually no change in mode shape with further increase in
beam curvature. This gives us the chance to try to obtain an estimate for
the eigenvalues from Raileigh’s principle, provided that a reasonable approx-
imation for mode shape is known. In the case of the modes symmetric in v,
the approximation for the transverse displacements of inextensional modes
can be obtained from equations (5,6) in the limit α → 0 and is given, up to
a multiplicative constant, by

v = sinh
β

2
cos[β(s̄ − 1

2
)] + sin

β

2
cosh[β(s̄ − 1

2
)]

− cosh
β

2
sin

β

2
− cos

β

2
sinh

β

2
,
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where β = Λ1/4|α=0 and satisfies the equation

cosh
β

2
sin

β

2
+ cos

β

2
sinh

β

2
− 4

β
sin

β

2
sinh

β

2
= 0. (7)

The expression for tangential displacements u can be obtained by requiring
that the centreline of the beam is unextended (that is, u′ − αv = 0) and
satisfying the boundary condition (3). Up to a multiplicative constant, it is
given by

u = α
∫ s̄

0
v ds̄ =

α

β

{
sin

β

2
sinh[β(s̄ − 1

2
)]

+ sinh
β

2
sin[β(s̄ − 1

2
)] + 2 sin

β

2
sinh

β

2
(1 − 2s̄)

}
.

The Rayleigh quotient gives

Λ =

∫ 1
0 [(v′ + αu)′]2ds̄∫ 1

0 (u2 + v2)ds̄
, (8)

where the expression in the numerator represents a scaled strain energy.
Substituting the expressions for the displacements into (8) gives

Λ =

{
(β2 + α2)2(sinh β + β) sin2 β

2
+ (β2 − α2)2(sin β + β) sinh2 β

2

− 16
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where allowed β values are the roots of equation (7).

It can be seen that the strain energy goes through a minimum. In the
case of symmetric modes, the value of the opening angle α∗ that provides a
minimum to the strain energy is given by

α2
∗ = β2 (β + sin β) sinh2 β

2
− (β + sinh β) sin2 β

2

(β + sin β) sinh2 β
2

+ (β + sinh β) sin2 β
2
− 16

β
sin2 β

2
sinh2 β

2

. (9)

For β ≥ 2 this yields α∗ ≈ β ≈ 2πn + 3π/2. One can see that the minima of
the non-dimensional eigenvalue for consecutive symmetric modes are spaced
2π apart. Because the integral in the denominator of (8) increases with
increasing opening angle of the beam, the position of the minimum of the non-
dimensional eigenvalue Λ is shifted toward larger opening angle compared to
the position of the minimum of strain energy.

In the case of modes antisymmetric in v, the approximation for the eigen-
value can be calculated in a similar manner and is given by

Λ =

{
(β2 + α2)2(sinh β − β) cos2 β

2
− (β2 − α2)2(sin β − β) cosh2 β

2

}
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where β is a root of the equation

cos
β

2
sinh

β

2
− cosh

β

2
sin

β

2
= 0. (10)

The features of the behaviour of the eigenvalue for the modes antisymmetric
in v are similar to those for the modes symmetric in v.

4 Approximations at large number of helical

turns

4.1 Approximation for eigenvalues

In this section, we obtain approximations for the non-dimensional eigenvalues
and mode shapes at large opening angle (or large number of helical turns)
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on the basis of asymptotic analysis of the equation for inextensional vibra-
tions (5). In the following analysis, a parameter δ =

√
Λ/α2 is considered to

be small and it is assumed that δ = O(1/α). By applying the scaling s̃ = αs̄,
Λ̄ = Λ/α4, equation (5) takes the form

v′′′′′′ + 2v′′′′ + (1 − Λ̄)v′′ + Λ̄v = 0 (11)

and the characteristic equation can be written as

γ2(γ2 + 1)2 = δ2(γ2 − 1). (12)

Assuming that δ is small, the roots of the characteristic equation can be
obtained by perturbation analysis of equation (12) and are given by

β1 = δ + O(δ2), β2, = (1 +
δ√
2
) + O(δ2), β3 = (1 − δ√

2
) + O(δ2)

β4 = −δ + O(δ2), β5 = −(1 +
δ√
2
) + O(δ2), β6 = −(1 − δ√

2
) + O(δ2)(13)

where γn = iβn. Therefore, for the modes symmetric in v, the general solution
of equation (5) has the form

v = c1 cos[β1α(s̄ − 1/2)] + c2 cos[β2α(s̄ − 1/2)] + c3 cos[β3α(s̄ − 1/2)]. (14)

The non-dimensional eigenvalue Λ can be obtained by substituting expres-
sion (14) into the boundary conditions (6) and requiring that the resulting
system of equations in ci has a non-trivial solution. Thus∣∣∣∣∣∣∣

cos(β1α/2) cos(β2α/2) cos(β3α/2)
β1 sin(β1α/2) β2 sin(β2α/2) β3 sin(β3α/2)

β3
1(β

2
1 − 2) sin(β1α/2) β3

2(β
2
2 − 2) sin(β2α/2) β3

3(β
2
3 − 2) sin(β3α/2)

∣∣∣∣∣∣∣ = 0.
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Up to order O(δ3), this equation can be reduced to

−β1 sin(β1α/2)[β3
3(β

2
3 − 2) sin(β3α/2) cos(β2α/2)

−β3
2(β

2
2 − 2) cos(β3α/2) sin(β2α/2)] = 0.

Obviously, this equation has two families of solutions. The first family is
given by the equation

sin(β1α/2) = 0

for which the solution is

ΛI
k = 4α2(πk)2, k = 1, 2, . . . (15)

The second family is given by the equation

β3
3(β

2
3 − 2) sin(β3α/2) cos(β2α/2) − β3

2(β
2
2 − 2) cos(β3α/2) sin(β2α/2) = 0,

which can be rewritten, up to the order O(δ2), as

sin[
α(β3 − β2)

2
] =

α(β3 − β2)

2

sin α

α
.

Given that sin α
α

= O(δ), this equation can be solved asymptotically for small
δ. Thus, to O(kδ2) we have

(β3 − β2)α/2 = kπ
[
1 − (−1)k sin α

α

]
,
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and therefore the non-dimensional kth eigenvalue for the second family is
given by

ΛII
k = 2k2π2α[α − (−1)k2 sinα] + O(1), k = 1, 2, . . . (16)

In a similar manner, an approximation for non-dimensional eigenvalues
can be derived for antisymmetric modes. In this case, the non-dimensional
kth eigenvalue corresponding to the first family is given by

ΛI
k = (πα)2(2k − 1)2, k = 1, 2, . . . (17)

while the non-dimensional kth eigenvalue for the second family is given by

ΛII
k = 2k2π2α[α + (−1)k2 sin α] + O(1), k = 1, 2, . . . (18)

It can be seen that the non-dimensional eigenvalues as functions of opening
angle for a given symmetry do not intersect and it is therefore possible to
arrange them in ascending order of frequency (see Table 1). This order is
different for symmetric and antisymmetric modes and it defines the order in
which the modes of a curved beam take one or another type of vibrational
behaviour at large opening angle.

Table 1: Approximations in ascending order of frequency
Symmetric ΛII

1 ΛI
1 ΛII

2 ΛI
2 ΛII

3 ΛI
3

Antisymmetric ΛI
1 ΛII

1 ΛII
2 ΛI

2 ΛII
3 ΛI

3
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4.2 Mode shapes at large opening angle

In order to obtain expressions for the eigenfunctions up to a multiplying
constant, we can set one of the coefficients ci in the expressions for nor-
mal displacements equal to 1 and estimate the remaining coefficients from
boundary conditions. If we set c3 = 1, then

c1 =
−β2f(β3α

2
)g(β2α

2
) + β3f(β2α

2
)g(β3α

2
)

β2f(β1α
2

)g(β2α
2

) − β1f(β2α
2

)g(β1α
2

)
,

c2 =
−β3f(β1α

2
)g(β3α

2
) + β1f(β3α

2
)g(β1α

2
)

β2f(β1α
2

)g(β2α
2

) − β1f(β2α
2

)g(β1α
2

)
,

where

f ≡
{

cos symmetric modes
sin antisymmetric modes

g ≡
{

sin symmetric modes
cos antisymmetric modes

Firstly, consider the non-dimensional eigenvalue given by the second fam-
ily of solutions (16) and (18). Substituting these expressions into (13), and
the latter into the above expressions for c1 and c2, and taking the limit
α → ∞ yields

c1 → 0, c2 → (−1)k+1,

where k is the mode index defined by (16,18). Therefore, the form of normal
displacements at large opening angle is, up to a constant,

v ≈
{

cos[α(s̄ − 1/2)] cos[kπ(s̄ − 1/2)] for odd k
sin[α(s̄ − 1/2)] sin[kπ(s̄ − 1/2)] for even k
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for symmetric modes, and

v ≈
{

sin[α(s̄ − 1/2)] cos[kπ(s̄ − 1/2)] for odd k
cos[α(s̄ − 1/2)] sin[kπ(s̄ − 1/2)] for even k

for antisymmetric modes. We can see that the normal displacements in this
case are highly oscillatory functions for which the spatial frequency of oscil-
lation is proportional to the opening angle, modulated by a slowly varying
function with frequency proportional to the mode index k in the particular
family of approximations. The tangential displacements in this case have
similar structure and are of the same order of magnitude as the transverse
displacements.

When the non-dimensional eigenvalue takes the values from the first fam-
ily of solutions (15) and (17), the structure of the normal displacements is
more complicated and generally all three terms in the expression (14) play
significant roles. In this case it is convenient to consider the more clearly de-
fined structure of the tangential displacements. The tangential displacements
have the form

u = b1g[β1α(s̄ − 1/2)] + b2g[β2α(s̄ − 1/2)]

+b3g[β3α(s̄ − 1/2)] + const, (19)

where
bj =

cj

βj
j = 1, 2, 3. (20)
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It is convenient in this case to set c1 = 1, so that we have the following
expressions for the remaining coefficients

c2 =
−β3f(β3α

2
)g(β1α

2
) + β1f(β1α

2
)g(β3α

2
)

β3f(β3α
2

)g(β2α
2

) − β2f(β2α
2

)g(β3α
2

)
, (21)

c3 =
−β1f(β1α

2
)g(β2α

2
) + β2f(β2α

2
)g(β1α

2
)

β3f(β3α
2

)g(β2α
2

) − β2f(β2α
2

)g(β3α
2

)
. (22)

By substituting the expressions for Λ from (15,17) into (13) and the latter
into (21), (22) and (20), it is easy to show that

b1 = O(α), b2 = O(1), b3 = O(1) as α → ∞.

The shape of the tangential displacements, up to the leading order, is given
by

u ≈
{

α sin[2kπ(s̄ − 1/2)] for symmetric modes
α cos[(2k − 1)π(s̄ − 1/2)] for antisymmetric modes

where k = 1, 2, . . .. It can be seen that the leading order part of the tangential
displacements is a slowly varying function with a number of half-waves pro-
portional to the mode index k in a corresponding family of approximations.
The transverse displacements in this case are of smaller order of magnitude
than the tangential ones.

It can be seen that the structure of the mode shapes for the two families
of approximations is essentially different. The tangential displacements of
the modes from the first family are much larger than the radial ones. These
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modes can be seen as torsional modes of a macroscopic helix, with the torsion
axis being the axis of the helix. The modes of the second family can be viewed
as transverse ones with respect to the helical axis. It appears that these two
different types of helical modes both originate from the flexural modes of a
curved beam.

5 Numerical results and discussion

The numerical calculations in this section are produced using a collocation
software for boundary-value odes ”Colnew”. In Figure 1, we plotted the
numerical solution of equations (1–4) and small opening angle analytic ap-
proximations for the non-dimensional eigenvalue of the lowest antisymmetric
and symmetric modes versus opening angle. It can be seen that the analytic
approximations provide an accurate description of the region of decrease and
subsequent rise of the non-dimensional eigenvalue and also give an accurate
prediction of the position of its minimum. However, the vibrational be-
haviour for larger opening angle can not be predicted by this approximation.
This is not surprising because the assumption that the mode shape remains
without change becomes invalid at that stage.

In Figure 2, the numerical solutions for non-dimensional eigenvalues of the
lowest three symmetric modes are shown together with large opening angle
analytic approximations. It can be seen that the analytic approximations
give an accurate prediction of non-dimensional eigenvalues for larger values
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Figure 1: Non-dimensional eigenvalue as a function of opening angle for
the lowest antisymmetric and symmetric modes. Analytic approximations
are shown by dashed lines.
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Figure 2: Numerical solution and large number of turns approximations for
non-dimensional eigenvalue of symmetric modes. The analytic approxima-
tions of the first family are shown by dotted lines, while the second family is
shown by dashed- dotted lines.
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of opening angle. The analytic approximations for the lowest two symmetric
modes are almost indistinguishable from the exact numerical solution for a
wide range of the opening angle. It is interesting to note that the second
mode belongs to the first family of vibrational behaviour at large opening
angle, while the lowest and the third modes belong to the second one. This is
also clearly demonstrated in Figure 3, where the numerical solutions for the
displacements of the three lowest symmetric modes are shown at a large value
of opening angle. In the case of antisymmetric modes the order is different.
The lowest mode belongs to the first family of vibrational behaviour, while
the next two modes belong to the second one. It appears that the order of
the modes (when arranged in ascending order of frequency) in the analytic
approximation of a particular type of symmetry defines the order in which the
modes of a curved beam of the same type of symmetry take one or another
type of vibrational behaviour at large opening angle.

6 Conclusions

Analytic approximations are derived for the vibrational modes of a helix
with small pitch in the plane normal to the helical axis, for the cases of
small and large number of helical turns. It is shown that for a small number
of helical turns the eigenvalues of all modes go through a minimum, which
is closely related to the minimum of strain energy. For large numbers of
helical turns, there are two families of asymptotic solutions for eigenvalues,
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Figure 3: Eigenfunctions of the three lowest symmetric modes at α = 50.
Transverse displacements are shown by solid lines, (a) first mode, (b) second
mode, (c) third mode.
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which correspond to the two different types of helical modes. Both types of
modes originate from the flexural modes of a uniformly curved beam and the
order in which these latter modes develop into one or other of helical modes
is established. Numerical simulations confirm the validity of our analytic
approximations for a wide range of number of helical turns.
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