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Abstract

We discuss various additive Schwarz preconditioners for a fully-
discrete and symmetric boundary element method when used to solve
a Dirichlet problem in the plane. These preconditioners work in the
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same way as when they are used for the Galerkin boundary element
method: the condition numbers of the preconditioned stiffness matri-
ces grow at most logarithmically with the degree of freedom. Several
numerical results are presented to support the theory.
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1 Introduction

We consider in this paper a boundary-value problem for the Laplace equa-
tion in a bounded domain in R2 with smooth boundary. Via the standard
fundamental solution, we reformulate the problem as a boundary-integral
equation of the first kind with a symmetric kernel. A fully-discrete and sym-
metric method for this equation was suggested in [5], which results in solving
a linear system the coefficient matrix A of which is dense. If N is the size of
A, then the Gauss solver requires O(N3) operations for computation of the
coefficients giving the solution of the fully-discrete method. Hence when N is
large one resorts to iterative methods, among which the conjugate gradient
method is the most practical and efficient one. Since A is ill-conditioned, in
the sense that its condition number increases with N , the convergence rate of
the iterative method deteriorates, which leads to a large number of iterations
needed. Preconditioners are necessary to reduce the cost of computation.

In this paper we shall discuss the use of additive Schwarz methods as pre-
conditioners for the above linear system. Non-overlapping and overlapping
two-level methods, and a multilevel method are discussed. We shall prove
that the condition numbers of the preconditioned systems grow at most log-
arithmically with the degrees of freedom.
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For a fairly complete list of references to works on preconditioners for
boundary-integral equations, the reader is referred to [8]. Multigrid analysis
of finite element methods with numerical integration for partial differential
equations has been discussed in [1, 3].

We should like to note that for the problem considered in this paper,
due to the smoothness of the solution, a direct method may be sufficient
in solving the linear system. However, this study is a step along the way
to developing preconditioners for more demanding problems, where they are
truly needed. Furthermore, the results in this paper apply not only to the
logarithmic boundary integral equation but also to any equation of the form
(6) in which the bilinear form l(·, ·) is equivalent to the H−1/2 norm.

2 The boundary-integral equation

We consider the problem

∆U = 0 in Ω
U = f on Γ,

(1)

where Ω ⊂ R2 is a bounded domain with smooth boundary Γ. Let νy denote
the outward unit normal at y ∈ Γ. It is known that U can be represented as

U(x) :=
1

2π

∫
Γ

φ(y) log
α

|x − y| dσy − 1

2π

∫
Γ

f(y)
∂

∂νy
log

1

|x − y| dσy,
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for x ∈ Ω, where φ is the normal derivative of U with respect to ν, and α is
a positive parameter to be specified later. Taking the trace on Γ and using
the jump relations of the single- and double-layer potentials, we deduce that
φ satisfies

1

2π

∫
Γ

φ(y) log
α

|x − y| dσy = F (x), x ∈ Γ, (2)

where

F (x) :=
1

2
f(x) +

1

2π

∫
Γ

f(y)
∂

∂νy
log

1

|x − y| dσy, x ∈ Γ.

Let γ be a 1-periodic parametric representation of Γ such that γ ∈ C∞

and |γ′(x)| 6= 0 for x ∈ R and let

u(x) :=
1

2π
φ[γ(x)]|γ′(x)| and g(x) := F [γ(x)].

Then we can recast (2) as
∫ 1

0

K(x, y)u(y) dy = g(x), 0 ≤ x ≤ 1, (3)

where
K(x, y) := log

α

|γ(x) − γ(y)| ∀x, y ∈ [0, 1]. (4)

Let

l(v, w) :=

∫ 1

0

∫ 1

0

K(x, y)v(x)w(y) dx dy. (5)
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We solve (3) in the weak form: find u ∈ H−1/2 such that

l(u, v) = 〈g, v〉 ∀v ∈ H−1/2. (6)

Here, for all s ∈ R, Hs denotes the usual 1-periodic Sobolev space of order s
with norm denoted by ‖·‖s.

The parameter α in the definition (4) of K is chosen to satisfy

α ≥ logarithmic capacity of Γ, (7)

so that
l(v, v) ≥ λ ‖v‖2

−1/2 ∀v ∈ H−1/2. (8)

For an explanation of the logarithmic capacity, see e.g. [4]. In practice, a
simple way of guaranteeing that (7) holds is to choose α to be greater than
the diameter of Γ.

3 The fully-discrete and symmetric method

In the standard Galerkin method, we seek a numerical solution u∗h ≈ u by
choosing a finite dimensional space Sh and requiring that u∗h ∈ Sh satisfy

l(u∗h, v) = 〈g, v〉 ∀v ∈ Sh. (9)

Galerkin’s method is a standard discretisation of (6), but in the system of
linear equations arising from (9) the coefficients and right-hand sides involve
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complicated integrals that usually cannot be evaluated analytically. Hence,
we are led to consider a fully-discrete Galerkin method in which the numerical
solution uh ∈ Sh satisfies

lh(uh, v) = 〈g, v〉h ∀v ∈ Sh. (10)

Here lh and 〈·, ·〉h are certain discrete approximations to l and 〈·, ·〉. The
forms lh and 〈·, ·〉h are constructed in such a way that uh achieves the same
rates of convergence as u∗h in the appropriate Sobolev norms. In [5] lh is
designed to preserve the symmetry of the exact problem so that

lh(v, w) = lh(w, v) ∀v, w ∈ Sh.

In the following we choose Sh to be the space of piecewise-constant func-
tions on a 1-periodic uniform mesh with N subintervals between 0 and 1
defined by tj := jh for j = 0, . . . , N , where h := 1/N .

We follow [5, Section 5] to define lh as follows. Let

a = 1/2, b = 0.1262814358793956, c = 0.6841827226000933, d = 1/6,

or

a = 1/2, b = 0.4992036265530720, c = 0.0398933386986113, d = 1/6,

and let s1 = s6 = a, s2 = s5 = 0, s3 = s4 = −a, σ1 = σ6 = b, σ2 = σ5 = c,
σ3 = σ4 = b, w1 = w6 = d, w2 = w5 = 1/2 − 2d, and w3 = w4 = d. With the
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quadrature weights being {w1, . . . , w6} and the quadrature points being

(ξp, ηp) :=
1

2
(1 + sp − σp, 1 + sp + σp), p = 1, . . . , 6,

we define

lh(v, w) := h2

N−1∑
j=0

N−1∑
k=0

6∑
p=1

wpK(xjp, ykp)v(ykp)w(xjp),

where xjp := tj +ξph and ykp := tk +ηph. We note that the quadrature points
(ξp, ηp), p = 1, . . . , 6, are symmetric about both diagonals of the original unit
square.

For the discrete inner product 〈·, ·〉h we also choose the quadrature pro-
posed in [5, Section 5] which is a 2-point Gauss–Legendre rule of degree of
precision 2 with quadrature points ξ′1 = 0.5(1 − 1/

√
3), ξ′2 = 0.5(1 + 1/

√
3),

and weights w′
1 = w′

2 = 0.5. We then define

〈v, w〉h := h
N−1∑
j=0

2∑
p=1

w′
pv(x

′
jp)w(x′jp),

where x′jp := tj + ξ′ph.

With lh and 〈·, ·〉h defined as above, it follows from [5, Theorem 5.1] that
for h sufficiently small there exists a unique solution uh ∈ Sh of (10) satisfying

‖uh − u‖s ≤ c ht−s ‖u‖t+max(−1−s,0) ,
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for s < 1/2, −1/2 < t, and −1 ≤ s ≤ t ≤ 1. Moreover, the discrete Galerkin
matrix is positive definite.

We note that the method designed as above is of translation-invariant
order 3 and that the orders of precision of the left-hand side and right-hand
side are both at least 3; see [5, Definition 4.2 and page 337].

4 Additive Schwarz preconditioners

4.1 General framework

In this subsection, we present the additive Schwarz method in an abstract
form. We consider a general problem on a finite-dimensional space S

Find u ∈ S such that L(u, v) = G(v) ∀v ∈ S, (11)

where L(·, ·) : S × S −→ R is a symmetric, bounded, and coercive bilinear
form, and G : S −→ R is a bounded linear functional.

To define an additive Schwarz method for (11), we represent S as

S = S0 + · · ·+ SJ , (12)

where Si, i = 0, . . . , J , are subspaces of S. Let Pi : S −→ Si be the projection
defined by

L(Piv, w) = L(v, w) ∀v ∈ S, w ∈ Si. (13)
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Denoting

P :=

J∑
i=0

Pi, (14)

we solve the variational problem (11) by solving

Pu = G̃, (15)

where G̃ :=
∑J

i=0Gi with Gi ∈ Si being a solution of

L(Gi, w) = G(w) ∀w ∈ Si.

The l2 condition number of P is given by κ(P ) = λmax(P )/λmin(P ) where
the extremum eigenvalues are related to the decomposition (12) in the fol-
lowing manner, see e.g. [10],

λmin(P ) = min
v∈S

L(v, v)

minP
vi=v

∑
i L(vi, vi)

and λmax(P ) = max
v∈S

L(v, v)

minP
vi=v

∑
i L(vi, vi)

.

(16)
Here v =

∑
i vi is a decomposition of v with vi ∈ Si. This decomposition

may not be unique. It results from (16) that, see e.g. [10],

κ(P ) ≤ Λ2

Λ1
(17)

if the following two conditions are satisfied:
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(C1) For any v ∈ S and for any decomposition v =
∑

i vi, vi ∈ Si, there
holds

L(v, v) ≤ Λ2

J∑
i=0

L(vi, vi) ;

(C2) For any v ∈ S there exists a decomposition v =
∑

i vi, vi ∈ Si, such
that

Λ1

J∑
i=0

L(vi, vi) ≤ L(v, v) .

Our aim is to design additive Schwarz methods so that Λ2/Λ1 is bounded
independently of (or grows at most logarithmically with) the degree of free-
dom. For the Galerkin approximation (9), it has been noted that the use
of some extra preconditioner is necessary before applying additive Schwarz
or multigrid algorithms. In [2], a difference quotient was used, whereas the
use of Haar bases was mentioned in [6, 7, 8, 9]. In this paper, Haar bases
will be used in the design of additive Schwarz methods for the fully-discrete
approximation (10).

Before moving to the description of the methods, we prove the following
lemma which yields the equivalence of the two bilinear forms l and lh.

Lemma 1 There exists positive constants C1 and C2 such that

C1l(v, v) ≤ lh(v, v) ≤ C2l(v, v) ∀v ∈ Sh.
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Proof: The boundedness of the form l(·, ·) and Theorem 2.1 (i) and Corol-
lary 3.9 in [5] immediately give the left-hand inequality. To prove the right-
hand inequality we first note that Lemmas 4.4 and 3.5 in [5] yield, respectively
(noting Theorem 2.1 (v) in the same paper),

|ah(v, v)| ≤ |a(v, v)|+ c ‖v‖2
−1/2 ≤ c ‖v‖2

−1/2 ∀v ∈ Sh,

and
|bh(v, v)| ≤ |b(v, v)| + c ‖v‖2

−1/2 ∀v ∈ Sh,

where ah(·, ·) and bh(·, ·) are defined as in [5] so that

lh(v, w) = ah(v, w) + bh(v, w) ∀v, w ∈ Sh.

(Here and in the sequel c denotes a generic positive constant which may take
different values at different occurrences.) Therefore by using (8) we obtain

lh(v, v) ≤ |ah(v, v)| + |bh(v, v)| ≤ c ‖v‖2
−1/2 + |b(v, v)|

≤ c ‖v‖2
−1/2 + l(v, v) ≤ c l(v, v) ∀v ∈ Sh.

The lemma is proved. ♠

4.2 Two-level methods

The convergence result for the fully-discrete method (10) discussed in [5] be-
ing established under the assumption that the meshes are uniform, we assume
in the following uniformity of a two-level mesh to simplify our presentation,
even though quasi-uniformity is allowed for the Galerkin method.
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The coarse mesh: We first divide I into disjoint subdomains Ii with
length H , i = 1, . . . , J , so that I = ∪J

i=1Ii.

The fine mesh: Each Ii is further divided into disjoint subintervals Iij
with length h, j = 1, . . . , N , so that Ii = ∪N

j=1I ij.

We recall that the finite-dimensional space S = Sh is defined as the
space of 1-periodic piecewise-constant functions on the fine mesh. For both
non-overlapping and overlapping methods, we define S0 to be the space of
1-periodic piecewise-constant functions on the coarse mesh.

The subspaces Si, i = 1, . . . , J , will be defined as spaces of functions which
are derivatives of piecewise-linear functions. We denote by T the space of
piecewise-linear functions on the fine mesh.

4.2.1 Non-overlapping method

Let
Ti :=

{
v ∈ T | supp v ⊂ I i

}
, i = 1, . . . , J,

and let
Si := {w | ∃v ∈ Ti : w = v′} , i = 1, . . . , J. (18)

Bases for Si can be formed by the Haar functions; see [9].
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The decomposition of S by (12) with Si defined as above allows us to
use (13) and (14) to define additive Schwarz operators PG and PF when
L = l (Galerkin approximation, see (11)) and when L = lh (fully-discrete
method), respectively.

Theorem 2 The condition number of the non-overlapping additive Schwarz
operator PF is bounded as

κ(PF ) = O(1 + log
H

h
). (19)

Proof: Lemmas 3.4 and 3.7 in [6] assure us that conditions (C1) and (C2)
hold for L = l with

Λ1 = c

(
1 + log

H

h

)−1

,

and Λ2 being a constant independent of H and h. In view of Lemma 1,
the same results hold for L = lh (with different constants), implying (19);
see (17). ♠

4.2.2 Overlapping method

We now extend each subdomain Ii on each side by a fixed number of subin-
tervals so that the length of the overlap between two extended subdomains
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I ′i and I ′i+1 is 2δ for some δ ∈ (0, H ] which is a multiple of h. This implies

|I ′i| ∼ H. (20)

The subspaces Si, i = 1, . . . , J , are now defined as in (18) with Ti now defined
by

Ti :=
{
v ∈ T | supp v ⊂ I

′
i

}
, i = 1, . . . , J.

This overlapping decomposition completely defines the additive Schwarz
operators PG and PF .

Theorem 3 The condition number of the overlapping additive Schwarz op-
erator PF is bounded as

κ(PF ) = O(1 + log2 H

δ
). (21)

Proof: Following the argument in the proof of Lemma 3.4 in [6] and using
Lemma 5.2 of [8] in lieu of [6, Eqn (3.17)] we obtain (C2) for L = l with

Λ1 = c

(
1 + log2 H

δ

)−1

.

The constant Λ2 in (C1) can also be obtained from Lemma 5.1 in [8], using
the same approach. Thus Lemma 1 yields the desired result. ♠
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4.3 Multilevel methods

The multilevel method is defined as follows. Starting with a coarse mesh

N 1 : 0 = x1
0 < x1

1 = 1/2 < x1
2 = 1,

we divide each subinterval into two equal intervals. Hence, if hl is the
meshstep of N l, l = 1, . . . , L − 1, then hl = 2hl+1. For l = 1, . . . , L and
i = 0, . . . , Nl := 2l, let φl

i be the hat function which takes the value 1 at
xl

i and zero at the other mesh points. We then define S l
i := span {ψl

i},
where the Haar basis function ψl

i is the derivative of φl
i. The space S is now

decomposed by

S = S0 +

L∑
l=2

Nl∑
i=1

S l
i .

It was proved in [9] that the condition number of the multilevel additive
Schwarz operator PG is bounded independently of the number of level L and
the number of mesh points. Using Lemma 1 again we deduce

Theorem 4 The condition number of the multilevel additive Schwarz oper-
ator PF is bounded independently of the number of level L and the number
of mesh points.
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5 Implementation

We briefly discuss in this section the implementation aspect of the two-level
methods. For the implementation of the multilevel method the reader is
referred to e.g. [9, 10].

Let φj be the brick function in the interval (tj−1, tj) and let Akl, k, l =
1, . . . , J , be sub-blocks of the stiffness matrix A arising from (10) defined by
Akl := (akl

ij ) with akl
ij = lh(φi, φj). Here φi and φj are brick functions such

that supp φi ⊂ Ik and supp φj ⊂ I l for the non-overlapping method, and

supp φi ⊂ I
′
k and supp φj ⊂ I

′
l for the overlapping method. Then A has the

form 


A11 A12 . . . A1J

A22 . . . A2J
. . .

...
AJJ


 .

The matrix representation B of the non-overlapping preconditioner will now
have the form 


A−1

11 O . . . O
A−1

22 . . . O
. . .

...
A−1

JJ


 + ΠA−1

0 Πt,

where A0 is the stiffness matrix on the coarse mesh level, Π is the inter-
polation operator from the coarse mesh level to the fine mesh level, and
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Πt is its adjoint operator. Let v be the vector representation of a func-
tion v =

∑J
i=0 vi ∈ S, vi ∈ Si. To compute Bv, there is no need to know

the explicit form of B. It suffices to solve the local problems Aiiwi = vi,
i = 1, . . . , J , and the global problem A0w0 = Πtv0, and obtain Bv as

Bv = Πw0 +
J∑

i=1

wi.

However, before doing so one has to transform the representation of the
function v in the usual basis to the Haar basis; see Section 4. After obtaining
the resulting function from Bv, a reverse transform to the usual basis is
necessary.

6 Numerical results

In our numerical experiments we considered the problem (1) for Γ being
the ellipse with semi-axes a1 = 4 and a2 = 2. The logarithmic capacity of
Γ in this case is (a1 + a2)/2 = 3. In our numerical calculations we chose
α = 3.5. The boundary condition was chosen to be f(x) =

√
|x1 + x2

2|,
where x = (x1, x2).

We solved the problem using the fully-discrete method described in Sec-
tion 3. The linear systems were solved via the conjugate gradient method,
with and without preconditioning. The iterations were stopped when the



6 Numerical results C1438

Table 1: (1): unpreconditioned, (2): preconditioned by non-overlapping
method, (3): preconditioned by overlapping method, (4): preconditioned by
multilevel method

Condition numbers Iterations
DoF (1) (2) (3) (4) (1) (2) (3) (4)

4 0.366E+01 0.366E+01 0.366E+01 0.234E+01 2 2 2 2
8 0.474E+01 0.474E+01 0.474E+01 0.457E+01 4 4 4 4
16 0.116E+02 0.193E+02 0.474E+01 0.665E+01 7 8 8 7
32 0.242E+02 0.253E+02 0.315E+01 0.290E+01 15 12 11 10
64 0.489E+02 0.319E+02 0.281E+01 0.105E+02 24 14 10 13
128 0.977E+02 0.389E+02 0.105E+02 0.122E+02 34 15 12 13
256 0.195E+03 0.467E+02 0.115E+02 0.144E+02 47 16 13 14
512 0.390E+03 0.550E+02 0.128E+02 0.164E+02 64 17 13 14
1024 0.779E+03 0.641E+02 0.145E+02 0.183E+02 87 18 14 14
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Table 2: (1): unpreconditioned, (2): preconditioned by non-overlapping
method, (3): preconditioned by overlapping method, (4): preconditioned by
multilevel method

CPU times
DoF (1) (2) (3) (4)

4 0.635E-01 0.704E-03 0.669E-03 0.648E-01
8 0.106E-02 0.922E-03 0.980E-03 0.468E-02
16 0.153E-02 0.201E-01 0.219E-01 0.106E-01
32 0.410E-02 0.343E-01 0.371E-01 0.206E-01
64 0.142E-01 0.615E-01 0.536E-01 0.396E-01
128 0.572E-01 0.149E+00 0.169E+00 0.695E-01
256 0.594E+00 0.608E+00 0.533E+00 0.264E+00
512 0.719E+01 0.359E+01 0.281E+01 0.165E+01
1024 0.520E+02 0.188E+02 0.150E+02 0.878E+01
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l2 norm of the residual was less than 10−9, and all calculations were per-
formed in double precision. The Lanczos algorithm was used to compute the
condition numbers.

Table 1 shows the condition numbers and numbers of iterations for the
unpreconditioned systems and the systems preconditioned by the non over-
lapping, overlapping, and multilevel methods designed in Section 4. Table 2
shows the cpu times for each of the methods.

7 Conclusion

We designed in this paper a non-overlapping and an overlapping two-level
method, and a multilevel method for the linear system arising from a fully-
discrete and symmetric boundary element method used to solve a Dirichlet
problem. The preconditioners work in the same way as in the case of the
Galerkin method: the condition number grows at most logarithmically with
the degree of freedom.
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