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Abstract

In assessing risks of exposure to toxic contaminants in environmen-
tal systems, the transport dynamics of contaminants through complex
heterogeneous media is a key determinant. Quantitative predictions of
contaminant concentrations and fluxes are often required for systems
involving different classes of physical dynamics and sharply discon-
tinuous material properties. For many volatile contaminants, special
conservation laws apply at interfaces between neighbouring system
subdomains. These conservation laws couple dependent variables be-
tween the subdomains in a dynamic sense. Within the subdomains,
essentially arbitrary physical processes may occur, possibly coupling
many dependent variables.

We describe the development of a code applicable to such multi-
physics problems. The code uses an advanced black box solver as an
engine to solve the partial differential equations appropriate to each
subdomain. Simple geometric domain decomposition is used to define
subdomains. In this first implementation, parallel instances of the
solver engine (that is, in each subdomain) communicate synchronously
with each other to facilitate time-stepping of the total system solution.
The interfacial conservation laws act as constraints to the subdomain
solutions, effectively providing dynamic internal boundary conditions.
Convergence characteristics of the discretised interface algorithms are
discussed in terms of validations against recently derived analytical
solutions for diffusion-limited transport in partitioning laminates. Fi-
nally, an application of the code to coupled benzene vapour transport
in variably saturated porous and permeable media is outlined.
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1 Introduction

Risk assessment methodologies pertinent to hydrocarbon exposure pathways
rely upon accurate models of hydrocarbon transport in target environmental
systems. Many fundamental principles governing hydrocarbon vapour phase
and non-aqueous phase liquid (napl) transport are reasonably well under-
stood, although the accurate description of hydrocarbon transport dynamics
in multiphase and/or strongly heterogeneous systems still presents difficulty
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to the theoretician. The situation can be exacerbated in risk assessment
studies because exposure pathways typically involve the transport/migration
of target contaminants through several different physical phases and media.
For example, domestic vapour inhalation risks may arise from solvent mi-
gration from an advecting dissolved phase in soil material or groundwater,
subsequent diffusion through a variably saturated porous phase, before re-
lease into a confined, semi-confined, or unconfined atmospheric phase. Tools
offering quantitative solutions for such complex problems need to cater for
diverse dynamical equation systems, strong heterogeneity or structure in ma-
terial definitions, and the possibility of several differing characteristic time
scales. Furthermore, the possibility of a diverse range of conservation laws
applying at interfaces between system phases must be admitted, and is of
particular interest in this work.

Attention is now directed to complex systems of mixed physical processes
and mixed, non-overlapping media. That is, the overall system domain may
consist of several distinct media types, in an arbitrary arrangement and mul-
tiplicity. Also, within the system domain, several different physical processes
may apply. Some of these may extend over several, or all, media, and some
may be confined to single media. Other processes may be coupled within me-
dia, or across media. It is assumed that the geometric statement of the media
arrangement is static, and that the physical processes may be modelled in
terms of sets of differential operators, which have as domains subsets of the
total system domain (see Figure 1). In a domain decomposition approach
to the overall problem, solution may be facilitated by dividing the complex
system into simpler subproblems. In many studies this decomposition is per-
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formed on geometric grounds, exploiting simplifications due to symmetry in
boundary conditions or in the coefficients of the differential operators. In
the present case, where different differential operators, Hm, may apply in
different regions of the system (indexed by m), the decomposition can take
into account not only boundary conditions and operator coefficients, but also
the various forms of the local physical operators. Geometric domain decom-
position therefore results in subdomains, which may or may not be spatially
congruent with the media comprising the system.

Clearly, the identification of the operators Hm is problem-dependent. In
the context of contaminant transport in porous/permeable systems, each op-
erator Hm is typically represented by a coupled set of parabolic equations
with a variety of source/sink terms, which may be linear (exponential decay,
volatilisation) or non-linear (isothermal sorption, Monod kinetic). Includ-
ing the possibility of fluid flow may require Navier-Stokes operators, while
coupled heat and reaction chemistry may lead to mechanical deformations of
the subdomains requiring stress tensor formulations, and so on. In this work,
attention is restricted to operators able to be expressed in terms of coupled
sets of partial differential equations that are, at most, first order in time and
second order in space. This, for example, includes the standard continuum
transport models used in soil contamination studies [1].

Whilst interfacial conditions appropriate for classical diffusion between
static media are well understood, yielding continuous (but not necessarily
differentiable) concentrations, not all physical dependent variables obey these
types of continuity relations. More problematic interface conditions are pre-
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Figure 1: A multiphysics system. Subdomains with different physical pro-
cesses (differential operators) Hm are separated by interfaces (solid lines).
Dashed lines indicate changes in subdomain properties (operator coefficients)
km

i . Boundary conditions are specified along the bounding box.
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sented by systems involving chemical partitioning interactions, which can
lead to sharp discontinuities in concentrations across physical phase inter-
faces. Continuum approaches provide valuable simplifications for transport
within porous media with microscopic structure [2], however for the present
case explicit solutions are required for the coupled transport and interface
equations.

Figure 1 depicts a system where media properties and physical dynam-
ics are discontinuous at a macroscale. For such systems, continuum models
must be enhanced to incorporate conservation laws appropriate to the sub-
domain interfaces; these interfacial laws are critical drivers in the system.
Recent work on the transport of volatile species in mixed media [3] has iden-
tified two simple classes of interfacial conditions. Consider an interface Γm,n

between subdomains m and n characterised by physical processes Hm and
Hn. Dependent variable um

i (the i-th dependent variable in subdomain m)
may be coupled with un

j across the interface Γm,n according to either a local
equilibrium law:

Equilibrium Condition

um
i (xk, t) = αm,n

i,j un
j (xk, t) ∀ xk ∈ Γm,n, t > 0 (1)

or by a resistive law relating the interfacial fluxes, q (which are proportional
to gradients of the u variables):
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Rate-Limited Condition

qm
i (xk, t) = qn

j (xk, t) = P m,n
i,j (xk, t)

P m,n
i,j (xk, t) = βm,n

i,j

(
um

i (xk, t) − αm,n
i,j un

j (xk, t)
)


 ∀ xk ∈ Γm,n, t > 0 (2)

The non-negative parameter α is referred to as a partitioning coefficient,
and can range over many orders of magnitude for various combinations of
chemical compounds and transport media. At equilibrium, both interfacial
conditions yield the same discontinuous distribution of independent variables
across the interface, determined by α; however at intermediate times the rate-
limited condition generates disequilibria through the form of the interface
“potential” P . Here the rate of relaxation to the partitioning equilibrium is
governed by the non-negative mass transfer coefficient β.

2 Numerical implementation—discretisation

and synchronisation

For the class of pde systems discussed above, reliable “black box” solvers are
readily available. In a finite difference context, the vlugr software pack-
age [4] provides a flexible and stable solver engine for handling the internal
dynamics of each subdomain. In two dimensions, vlugr solves the nonlinear
system

H(t, x, y, u, ut, ux, uy, uxy, uxx, uyy) = 0 (3)
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subject to the boundary and initial conditions

B(t, x, y, u, ux, uy) = 0 and u(x, y, t0) = u0(x, y) (4)

using a local grid refinement technique. Here, as in the discussion above,
the solution u = (u1, u2, . . . , uL) is a vector quantity of finite dimension L.
vlugr incorporates an automatic time stepping procedure, with time steps
dynamically adjusted so that the solution error remains within user-input
bounds.

In the context of multiphysics processes, parallel instances of the vlugr

solver are assigned to the subdomains identified in the geometric decomposi-
tion of the overall problem. It remains to establish a time stepping implemen-
tation of the interfacial conditions linking the dynamics in the subdomains.
Discussions on time stepping techniques for domain decomposition problems
have been presented by Mathew et al. [5] and Amitai et al. [6]. Here, as
a first implementation, a simple static-synchronous approach is used (see
Table 1). For clarity the method is outlined in one dimension, although a
two-dimensional implementation has already been completed. Consider a
problem domain represented by the interval x ∈ [xmin, xmax], split into two
subdomains contiguous at the interface xk associated with problem opera-
tors H1 and H2. Coordinate arrays in the subdomains are determined by
the discretisations ∆x1 and ∆x2. At system time t the subdomain solutions
are represented by

and
{u1

i (xmin, t), u
1
i (xmin + ∆x1, t), . . . , u

1
i (xk, t)}{

u2
j(xk, t), u

2
j(xk + ∆x2, t), . . . , u

2
j(xmax, t)

} (5)
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System boundary conditions apply at xmin and xmax. For an equilibrium
interface condition (equation (1)) at xk, relating solution components u1

i and
u2

j , the solutions can be advanced to system time t+∆tsystem, where ∆tsystem

is a (static) constant time step input by the user, by solving H1 and H2 in
turn, subject to zero gradient conditions at xk. The equilibrium condition is
imposed at the end of each system time step by modulating the local grid
point values according to equation (1). For example, at the completion of the
system time step leading to system time t, and neglecting volumetric effects
arising from variable porosities, a mass-balanced partitioning condition leads
to the updated values (denoted by *)

u1∗
i (xk, t) =

α1,2
i,j M1,2

i,j

α1,2
i,j ∆x1 + ∆x2

= α1,2
i,j u2∗

j (xk, t) (6)

where M1,2
i,j is the integrated mass in solution components i and j local to

the interface. M is approximated using a simple trapezoidal rule as follows.

M1,2
i,j (t) ≈ ∆x1

2
(u1

i (xk − ∆x1, t) + u1
i (xk, t))+

∆x2

2
(u2

j(xk, t) + u2
j(xk + ∆x2, t))

(7)

This trapezoidal approximation introduces mass balance errors that scale as
∆x2, and can easily be replaced by more accurate schemes if required. Up-
dated values at the extra grid points u1

i (xk −∆x1, t) and u2
j(xk +∆x2, t) used

in determining M follow from the zero gradient assumption and equation (6).
These extra points are included to overcome indeterminacies associated with
the zero gradient subdomain conditions. H1 and H2 are then integrated
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for one time step, and the above partitioning scheme is applied, and so on.
Thus, solutions in neighbouring subdomains communicate with each other
simultaneously at the end of each fixed system time step by a simple iteration-
free procedure. For the rate-limited interface conditions, equation (2), the
procedure requires the calculation of the P 1,2

i,j quantity at the end of each
system time step, applying the resulting interfacial gradient conditions for
the duration of the next system time step. In this case, single points in
each domain, u1

i (xk, t) and u2
j(xk, t), are sufficient to fix P . In the following

sections the convergence properties of these simple interfacial schemes are
examined briefly, and an example application is sketched.

Table 1: Static-synchronous interfacial time stepping scheme.
user input of ∆tsystem

1 advance all operators H i by ∆tsystem

tsystem = tsystem + ∆tsystem

updateinterfacial conditions using H i solutions

goto 1

3 Convergence behaviour

The interfacial schemes outlined above have been validated against analytical
solutions for representative transport processes in laminate media subjected
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to steady and transient system boundary conditions [2, 3, 7, 8]. Here con-
vergence results are presented for numerical solutions for steady boundary
condition problems. Convergence is measured with respect to analytical solu-
tions gained by eigenfunction expansion techniques [3]. Table 2 shows results
for a one-dimensional system x ∈ [0, 2] composed of two subdomains with
equilibrium interface condition located at xint = 1. Within each subdomain
a scalar diffusion equation applies:

Subdomain 1
∂u1

1

∂t
= d1

∂2u1
1

∂x2

Subdomain 2
∂u2

1

∂t
= d2

∂2u2
1

∂x2

(8)

where d1 and d2 are simple diffusion coefficients with values 5 and 0.05, re-
spectively. Zero-gradient boundary conditions apply at x = 0 and x = 2. The
initial condition is u1

1(x, 0) = 1, 0 ≤ x ≤ xint and u2
1(x, 0) = 0, xint ≤ x ≤ 1.

rms percentage errors between numerical and analytical results are calcu-
lated by summing over all grid points within 0.1 of the interface in each
subdomain. Each entry in Table 2 contains three values, corresponding to
α1,2

1,1 = 1/500, 1 and 500, respectively. Table 3 shows corresponding results

for the rate-limited interface condition, with β1,2
1,1 = 0.01 and for two values

of partitioning coefficient, α1,2
1,1 = 1/500 and 500, respectively. Stability prob-

lems in the rate-limited interfacial scheme for non-equilibrium systems are
common for β values greater than unity, due to the large transient gradients
applying at the interfaces.

The tables show that uniform convergence behaviour does not apply for
all discretisations in the current implementation. In Table 2, for the exhibited
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Table 2: Convergence behaviour of the equilibrium interface condition. Sub-
domains have matching discretisations.

∆t
rms Error (%) 0.001 0.0005 0.00005

0.02 86.0/4.53/5.97 21.8/5.14/6.42 3.77/5.73/6.82
∆x 0.01 366/0.29/1.68 98.9/1.57/2.55 1.90/2.77/3.34

0.005 1172/3.94/1.71 381/1.27/0.01 10.0/1.18/1.54

Table 3: Convergence behaviour of the rate-limited interface condition.
Subdomains have matching discretisations. Numbers in parentheses indicate
powers of ten.

∆t
rms Error (%) 0.001 0.0005 0.00005

0.02 23.7/62.4 23.5/64.4 23.6/67.0
∆x 0.01 2.33/12.7 2.40/6.91 2.47/0.74

0.005 1.09/3.2(-3) 1.17/8.2(-3) 1.23/1.7(-2)
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combinations of ∆x and ∆t, reasonably accurate solutions were gained for
α1,2

1,1 = 1 and 500, where departures from the initial conditions are small, but

gross errors were encountered for α1,2
1,1 = 1/500, where finer spatial discretisa-

tions led to increased errors. In this case, for relatively coarse discretisations,
the rms errors were found to scale approximately as (∆t/∆x)2. For finer dis-
cretisations, the rms error scaled approximately bilinearly, i.e. as ∆x∆t. In
Table 3, the convergence picture is again complicated. For decreasing ∆x,
the rms error tended towards first order in nature, while therms error was
approximately independent of ∆t, except when ∆x = 0.01 and α1,2

1,1 = 500.

Again, best accuracy was achieved for α1,2
1,1 = 500, where departures from the

initial conditions were the least.

In summary, it is clear from Table 2 that optimal discretisations are un-
likely to be found by simple linear programming approaches in (∆x, ∆t) space
without first locating the region of approximate linear convergence. There
are several reasons for this. First, vlugr uses an error formulation that is
grid dependent. This error norm is used to estimate both time step lengths
and solution convergence. Hence, comparing multi-domain results calculated
from different spatial and temporal grids is complicated. This may be part
of the reason that the results shown in the tables are uneven, even though
internal vlugr error parameters were held constant throughout the simula-
tions. Second, the vlugr engine uses an adaptive time stepping approach,
so that several internal subdomain time steps may be performed in between
the interface communication stage indicated by equation (6). Thus subdo-
main solutions may repeatedly be advanced using fixed interfacial conditions.
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This may be overcome within the current temporal implementation by em-
ploying exceedingly fine interface time steps so that the number of internal
subdomain time steps between interfacial updates is minimised.

Another approach to overcome this poor interfacial performance is to
allow the subdomain dynamics to determine the interfacial time steps. Con-
sider a system with N physical operators H i acting in N subdomains i. At
a given system time tsystem, in each subdomain i the solver instance will pro-
duce an estimate of the maximum time step ∆timax it may integrate over so
that the associated solution error bound will be satisfied. The system time
step ∆tsystem may then be chosen to be the minimum of the subdomain time
steps. The system (i.e. all subdomains) is then advanced synchronously by
∆tsystem. The advantages of this scheme over the static-synchronous scheme
implemented above are:

1. improvements in solution accuracy for all subdomains for all time steps;

2. improved description of interfacial dynamics and transients; and

3. possibly more efficient time stepping, as system time steps can increase
or decrease as appropriate in response to system equilibria and tran-
sients.

The essential steps in the dynamic-synchronous method are summarised in
Table 4. Improved time stepping methods are currently under investigation
by the authors.



4 Application—hydrocarbon biodegradation in a capped soil column C1458

Table 4: Dynamic-synchronous interfacial time stepping scheme.
1 determine the set {∆timax}, i = 1, . . . , N

∆tsystem = min( {∆timax} )

advance all operators H i by ∆tsystem

tsystem = tsystem + ∆tsystem

updateinterfacial conditions using H i solutions

goto 1

4 Application—hydrocarbon biodegradation

in a capped soil column

As an example of the use of the numerical implementation of the interface
conditions, the problem of multispecies vapour transport in a variably sat-
urated 3 m soil column is examined. This one-dimensional problem is com-
plicated by the presence of a thin (1.5mm) permeable cap (geomembrane)
at the ground surface, thereby dividing the system into four subdomains.
In vertical order, from below, these are the saturated (horizontally advect-
ing) groundwater zone, the variably saturated soil column, the permeable
capping, and the atmosphere above. Vapour transport in each of the four
subdomains is controlled by quite different physical operators. Here, for sim-
plicity, the behaviour of the saturated groundwater zone and the atmospheric
zone is parameterised in terms of system boundary conditions to the lower
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boundary of the soil column and to the upper surface of the capping material.

The soil column contains a hydrocarbon phase, variably distributed in the
vertical, that is volatilising into the soil gas, where it diffuses through the soil
column. The hydrocarbon vapour may dissolve into soil water, where it may
be consumed by aerobic microbial action. The rate of microbial degradation
may be modelled by a Monod kinetic term, directly coupling local hydro-
carbon and oxygen concentrations. Simple Fickian diffusion is assumed to
apply in the permeable capping. With various assumptions regarding soil
continua, local gas-water equilibria etc, and following the detailed discussion
in Öhman [9], the relevant operators, H1 (soil column) and H2 (cap), can be
shown to assume the forms:

Subdomain 1
H1




R1(z)
∂u1

1(z,t)

∂t
= ∂

∂z
(D1(z)

∂u1
1(z,t)

∂z
) − χ1 µ(u1

1, u
1
2, u

1
3)

+kvap
ksat−u1

1(z,t)

ksat
u1

4(z, t)

R2(z)
∂u1

2(z,t)

∂t
= ∂

∂z
(D2(z)

∂u1
2(z,t)

∂z
) − χ2 µ(u1

1, u
1
2, u

1
3)

∂u1
3(z,t)

∂t
= kbioyield µ(u1

1, u
1
2, u

1
3) − kbiodie u1

3(z, t)

∂u1
4(z,t)

∂t
= −kvap

ksat−u1
1(z,t)

ksat
u1

4(z, t)

(9)

Subdomain 2
H2




∂u2
1(z,t)

∂t
= Dcap

1
∂2u2

1(z,t)

∂z2

∂u2
2(z,t)

∂t
= Dcap

2
∂2u2

2(z,t)

∂z2

(10)

where the k quantities are constants, the χ parameters indicate stoichiometric
relations appropriate for the microbial degradation of the hydrocarbon, and
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the microbial degradation term µ is given by the coupled form

µ(u1
1, u

1
1, u

1
1) = σ1

u1
1

u1
1 + σ2

u1
2

u1
2 + σ3

u1
3

u1
3 + σ4

(11)

In this simplified model, components 1, 2 and 3 in subdomain 1 are identified
with the hydrocarbon vapour phase, the oxygen gas phase and the microbial
population, respectively. Component 4 represents an immobile non-aqueous
phase liquid (napl) distribution that volatilises, supplementing the hydro-
carbon vapour phase. The R(z) and D(z) functions are retardation and effec-
tive diffusion coefficients, respectively. These coefficients reflect variations in
gas/water phase tortuosities and volumetric measures, and are complicated
functions of elevation in the soil column. In subdomain 2, a simple uncoupled
twin-component model is used to describe the diffusion of the hydrocarbon
vapour and oxygen in the capping medium. The soil-capping interface gen-
erates partitioning discontinuities in the mobile (hydrocarbon and oxygen)
phases. For polymeric capping, appropriate α values for the soil gas-capping
interface range from 0.01 to 0.0001.

Figure 2 shows results for the example problem above, using hydrocarbon
parameters appropriate for benzene, highlighting the non-linear nature of the
solutions in subdomain 1, and the significant change of scale and interfacial
mass transfer mechanisms for the hydrocarbon in subdomain 2.
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Figure 2: Solution components for the soil contamination example. Num-
bers indicate solution times (days). The top right plot shows capping concen-
trations determined using either an instantaneous (solid line) or rate-limited
(dashed line) interfacial condition.
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5 Conclusions

Solving multiphysics problems in multidomain systems hinges on the de-
velopment of stable interfacial time stepping algorithms. These algorithms
advance subdomain solutions in time in parallel, mediating information flow
through the system. A simple synchronous algorithm, used in conjunction
with a flexible solver code, yields reasonable results for complicated chemical
transport applications. However, acceptable solution convergence is accom-
panied by fine spatial-temporal grids, indicating the need for more efficient
interfacial time stepping algorithms.
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[9] J. Öhman. Modelling transport and degradation dynamics of BTEX
vapours in a contaminated vadose zone. Master’s thesis, Uppsala
University School of Engineering, Uppsala, Sweden, 1999. C1459


	Introduction
	Numerical implementation---discretisation and synchronisation
	Convergence behaviour
	Application---hydrocarbon biodegradation in a capped soil column
	Conclusions
	References

