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Filtering methods for finite-time normal modes
and atmospheric error growth
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Abstract

Krylov subspace methods are employed to generate the leading
normal modes (nms) and dominant finite-time normal modes (ftnms)
for atmospheric flows. The filtering techniques that play essential roles
in our applications are described. The statistics of 100 evolved error
fields are studied and compared with the growth and structures of fast

∗Meteorology CRC, CSIRO Atmospheric Research, Australia.
mailto:mwei@splash.princeton.edu, mailto:jorgen.frederiksen@dar.csiro.au,
mailto:steve.kepert@dar.csiro.au

0See http://anziamj.austms.org.au/V42/CTAC99/Wei1 for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

mailto:mwei@splash.princeton.edu
mailto:jorgen.frederiksen@dar.csiro.au
mailto:steve.kepert@dar.csiro.au
http://anziamj.austms.org.au/V42/CTAC99/Wei1


Contents C1483

growing nms and ftnms in a barotropic tangent linear model, with
time-dependent basic states taken from observations.
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1 Introduction

We apply Krylov subspace methods for generating the leading normal modes
(nms) and dominant finite-time normal modes (ftnms) for atmospheric flows.
Krylov subspace methods reduce the size of the matrix that needs to be solved
in order to calculate the leading eigenvalues and eigenvectors of large systems
of differential equations [3, 2, 4]. We describe the filtering techniques that
we apply to start the Arnoldi process for generating the dominant nms and
ftnms. We examine the structural organisation of initially random errors in
a barotropic tangent linear model, with time-dependent basic states taken
from observations. The statistics of 100 evolved error fields are studied for
six day periods and compared with the growth and structures of fast growing
nms and ftnms.

Section 2 briefly summarises the barotropic tangent linear model used
in this study. The Krylov subspace methods and filtering methods used to
generate leading nms and ftnms are presented in Section 3. In Section 4,
we compare the growth and structures of evolved error fields with nms and
ftnms and our conclusions are presented in Section 5.
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2 Model Details

Models of atmospheric flows may be written in the form dX(t)
dt

= N[X(t)],
where N denotes a nonlinear operator. Here, X(t) is the state vector speci-
fying the time-dependent flow in the phase space of either grid point values
or spectral components of the dynamical variables. In this paper, the basic
state flow will be taken directly from the observations.

We use the tangent linear equations based on the barotropic vorticity
equations to describe error growth. This choice is based partly on simplicity
and the need to perform large ensembles of simulations. For the flow on a
sphere, the nondimensional form of the tangent linear vorticity equation is
given by

∂ζ

∂t
= −J(ψ, ζ̄ + 2µ) − J(ψ̄, ζ) − ηζ − η′∇4ζ, (1)

where J(ψ, ζ) = ∂ψ
∂λ

∂ζ
∂µ
− ∂ψ

∂µ
∂ζ
∂λ

, ψ is the streamfunction perturbation, ζ = ∇2ψ

is the vorticity perturbation, while ζ̄ and ψ̄ are the basic state vorticity and
streamfunction respectively. The other parameters in the above equation are
as follows: t is time, λ is longitude, µ is sine of latitude, and η and η′ are
the coefficients of viscosity representing drag and diffusion. All the variables
are nondimensional with space coordinates scaled by the earth’s radius and
time scaled by Ω−1, the inverse of the earth’s angular velocity.

The spectral version of the barotropic tangent linear equation is obtained
by expanding the streamfunction and vorticity in spherical harmonics, e.g.
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ζ(λ, µ, t) =
∑R

m=−R
∑|m|+R

l=|m| ζml(t)P
m
l (µ) exp(imλ), where R is a rhomboidal

truncation wave number, which we take to be 15. Here Pm
l (µ) are orthonor-

malised Legendre functions, m is the zonal wave number and l is the total
wave number. With x denoting the column vector of real and imaginary
parts of spectral coefficients of perturbation fields, the tangent linear spec-
tral equations can be written in the form

dx(t)

dt
= M(t)x(t), (2)

where M(t) is the tangent linear operator evaluated on the observed trajec-
tory X(t). The formal solution of equation (2) is

x(t) = G(t, t0)x(t0), (3)

where G(t, t0) is called the propagator.

Since we are interested in studying the dependence of our results on the
choice of viscosity used, we study both the inviscid case and a case with
a typical magnitude of the viscosity. Comparison of the respective results
gives an indication of the sensitivity to dissipation. In the viscous case, the
coefficients of viscosity are chosen as η = 8.4 × 10−7s−1 and η′ = 2.5 ×
1016m4s−1. The tangent linear equations are solved with a half-hour time
step. For the basic states we use 300-mb streamfunction fields that are
taken from daily observations and linearly interpolated to obtain the time-
dependent fields needed every half-hour.
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3 Propagator Eigenmodes

3.1 Finite-time normal modes

The natural generalisations of normal modes, to the case of time-dependent
instability matrices, M(t), are the eigenvectors of the propagator, G(t, t0)
[1]. The eigenvalue equation for G(t, t0) is

[λνI −G(t, t0)]φ
ν = 0, ν = 1, . . . , n, (4)

where λν = λν [t, t0] and φν = φν [t, t0] are the eigenvalues and eigenvectors.
We call these eigenvectors finite-time normal modes (ftnms) following [1]. In
the above equation, I is the unit matrix. Since the propagator G(t, t0) maps
any initial perturbation at time t0 to time t, it must carry some important
information about the evolution of the basic state X(t), and its eigenvectors
must play some role in the error growth from t0 to t. From (4), it is evident
that |λν [t, t0]| represents the amplification of the eigenmode during the period
t − t0 and the time-evolving basic state will be unstable if the modulus of
λν [t, t0] is greater than 1.0. If we expand the initial vector x(t0) in terms of
the eigenvectors of G(t, t0)

x(t0) =
n∑

ν=1

κνφν , (5)
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then the solution to equation (3) is [1]

x(t) =

n∑

ν=1

κνλν(t, t0)φ
ν , (6)

where κν is given by

κν = 〈αν,x(t0)〉 / 〈αν , φν〉 . (7)

Here 〈 , 〉 is the Euclidean inner product, and αν are the adjoint modes of
G(t, t0).

Equation (6) shows that the tangent linear dynamics filters the initial
disturbances in favour of the fast growing ftnms with larger amplification
factors |λν |. This filtering tends to be more effective if the ftnms are con-
sidered for longer time intervals t − t0. However for any finite time interval
t− t0, we can increase the effectiveness of the filtering process by repeating
it. The purging of subdominant ftnms is achieved by integrating an initially
random perturbation from t0 to t, then recycling the perturbation back to
t0, integrating to t and continuing the process as many times as is required.
The final filtered vector is then used to start the Arnoldi process.

In the Arnoldi method, the propagator G(t, t0) is never explicitly cal-
culated; what we need is just the action of G(t, t0) on a vector and this is
achieved by integrating the tangent linear model (2). In our numerical ex-
periments, we have found that this method is very efficient and accurate.
In cases with longer time intervals t − t0, only a few filtering iterations are
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needed to obtain a large number of the dominant ftnms with very high
accuracy.

3.2 Normal modes

In the special case when M(t) is independent of time, the propagator has the
form

G(t, t0) = exp M(t− t0). (8)

This may be a reasonable approximation if, over a short time interval, X(t)
is slowly varying. The propagator then has eigenvalues λν = expµν(t − t0)
and eigenvectors φν , ν = 1, . . . , n. Here n is the dimension of X, µν are the
complex eigenvalues of M and φν are the eigenvectors of M.

For non-zero and non-degenerate eigenvalues, the eigenmodes form a com-
plete bi-orthogonal system together with the adjoint eigenmodes. The per-
turbation x(t) will be dominated by the leading normal modes (nms), which
are those associated with the largest real parts of µν , when t � t0. The
non-leading modes will gradually become irrelevant with increasing time [1].

The method of purging the sub-dominant eigenvectors in the case when
the matrix M is a constant, is simply to integrate the linear equation (2)
forward for a sufficiently long time from a random initial condition. The
evolved vector is eventually determined by the leading eigenvectors that grow
most rapidly, with more slowly growing eigenvectors becoming irrelevant with
increasing time.
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If the perturbation becomes too large after a certain time, then the pertur-
bation is normalised and the integration continued. This process is repeated
until the integrated perturbation is dominated by the leading eigenvectors of
M. The final filtered perturbation vector is then used to start the Arnoldi
process.

3.3 Implementation in iterative eigensolvers

For both constant and time-dependent M(t), the final filtered vector de-
scribed in the above two subsections is denoted by x. From this vector
we then create k vectors, x1 = x, x2 = Gx, . . ., xk = Gk−1x where
G = G(t0, t0+∆t) for the case when M is constant and ∆t is a suitable small
time step. In our studies we have found that ∆t = 450 s or 900 s are satisfac-
tory choices. The results with both of these values of ∆t are of high accuracy.
When M(t) is time dependent, we have G = G(t0, t) and the time interval
[t0, t] depends on one’s interest. The subspace spanned by these k vectors
is called the Krylov subspace [3], Kk(G,x) = span{x,Gx,G2x, . . . ,Gk−1x}
where G is of dimension n× n and k � n in general. One can then extract
approximations for G from this k-dimensional subspace Kk(G,x).

We start the Arnoldi process ([3]) from an initially normalised vector

w1 = x(t)
‖x(t)‖ , where x(t) is the final filtered vector that is dominated by either

the leading nms (for stationary basic state) or dominant ftnms (for time-
dependent basic state). The general terms in the factorisation are determined
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through the coupled equations

vi+1 = Gwi −
i∑

j=1

(wT
j · Gwi)wj, wi+1 =

vi+1

‖vi+1‖ , (9)

where i = 1, 2, . . . , k. Each of the vectors ui = Gwi is orthonormalised to all
those previously generated. It can be shown that {w1,w2, . . . ,wk} forms an
orthonormal basis of the Krylov subspace Kk. In practice, we have used a
modified Gram-Schmidt scheme, always with double orthogonalisation. This
improves the orthogonality of all the vectors generated during the Arnoldi
process, although this re-orthogonalisation increases the computational cost.
One of the most reliable orthogonalisation techniques is the Householder algo-
rithm, but it is more expensive than the modified Gram-Schmidt method [3].
Details about the techniques for calculating the eigenvalues and eigenvectors
of G(t, t0) from Equation (9) can be found in [4, 2].

4 Numerical Results

In this section, we compare the growth and structures of initially random
errors growing on observed Southern Hemisphere basic states with proper-
ties of nms and ftnms. We focus on dynamical development during the
period between 20 and 26 April 1989 when blocking highs developed at the
longitudes of eastern Australia and in the central Pacific. We analyse the
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statistics of the growth of 100 initial randomly generated error fields. The ini-
tial random perturbations are chosen from a Gaussian distribution in which
the magnitudes of the streamfunction spectral coefficients are proportional
to (2l + 1)−1; that is, |ψml| ∼ 1

2l+1
. The corresponding kinetic energy spec-

tra are then consistent with typical estimates of 2-day forecast errors. Each
perturbation is evolved in the tangent linear barotropic model from 20 to 26
April.

Figure 1 summarises our results for the increases in the amplification
factors with time as the 100 initial random perturbations grow. Here the
amplification factor Af of a perturbation is defined as the ratio of its evolved
root mean square (rms) streamfunction amplitude to its initial rms stream-
function amplitude. In Figure 1a, we show Af for 20 of the perturbations;
these 20 were the first of the 100 that were chosen by our random number
generator. Also shown in Figure 1a is the amplification factor for ftnm 1 for
different time periods starting on 20 April and finishing on the day indicated.
We note that for all but one of the 20 first perturbations the amplification
factors on a given day are smaller than for ftnm 1. In fact, this exception is
the only outlier among the 100 error fields that exceeds the ftnm 1 amplifi-
cation factor at any stage. Figure 1a also shows the mean of the amplification
factors for the first 20 perturbations (indicated by 2). The variations in the
amplification factors of the error fields are reflections of the projections of
the initial errors onto ftnm 1.

For the inviscid case, we depict, in Figure 1b, the mean (thin solid) of
the 100 amplification factors of the error fields and as well the mean ± the
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Figure 1: The amplification factors of ftnm 1 and evolved errors in both
inviscid and viscous cases during periods from 20 to 21, 22, . . ., 26 April 1989.
(a). The first 20 of the 100 evolved random errors (solid lines), ftnm 1 in
inviscid case (∗) and the mean of the first 20 evolved random errors (2). (b).
Inviscid case: ftnm 1 (∗), the mean of 100 evolved errors (thin solid line)
and mean ± standard deviation of 100 evolved errors (thin dashed lines).
Viscous case: ftnm 1 (2), the mean of 100 evolved errors (thick solid line)
and mean ± standard deviation of 100 evolved errors (thick dashed lines).
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standard deviation (thin dashed) of the 100 amplification factors. Also shown
in Figure 1b are the corresponding results for the viscous case (respective
thick lines). Figure 1b again shows the amplification factor for ftnm 1 in
the inviscid case and as well in the viscous case. We note that both the mean
and mean + standard deviation of the amplification factors of the error fields
on a given day are smaller than for ftnm 1 in the respective inviscid and
viscous cases. As expected viscosity reduces the amplification factors of both
the error fields and ftnms.

Our interest here is in determining the statistics of pattern correlations
(calculated over the Southern Hemisphere) between the random perturba-
tions and the ftnms. We note that the structure of ftnms may change with
time or phase (for generalised travelling ftnms). We therefore calculate the
pattern correlation (Ac) at the phase of the ftnm that gives the largest Ac .
The mean (solid) and mean ± the standard deviation (dashed) of the pattern
correlations between each of the 100 error fields and ftnms are displayed in
Figure 2. Figure 2a shows these quantities for the largest correlations taken
over the five fastest growing ftnms and for both the inviscid (thin lines) and
viscous (thick lines) cases. The largest correlation is calculated as follows.
For each error field at time t we calculate the pattern correlation with each
of the five fastest growing ftnms for the period t0 to t and take the largest
of these five pattern correlations. Then, we calculate the mean and mean ±
standard deviations over 100 error fields. Figure 2b depicts the correspond-
ing results for the correlations between the error fields and ftnm 1 in the
inviscid (thin lines) and viscous (thick lines) cases.
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In Figure 2a, the mean and the mean ± the standard deviations increase
monotonically with time and there is little difference between the inviscid
and viscous cases. However, correlations with individual ftnms may be
more variable as shown for ftnm 1 in Figure 2b. We note in particular
that ftnm 1 generally, but not always, gives the largest average pattern
correlations with the error fields. It appears that ftnm 1 and ftnm 3 swap
roles on 24 April in the viscous case. From Figures 2a and b, we might
also expect that the average correlation taken over the five fastest growing
ftnms and the mean correlation with ftnm 1 would increase further if the
time interval were increased beyond six days. We have confirmed that this
is the case (not shown).

Next, we consider probability distributions of correlations between the
100 evolved error fields on 26 April and ftnms for the period 20 to 26 April.
We compare these with corresponding probability distributions where the
correlations involve nms of the instantaneous basic state at 0000 UTC on
25 April instead of the ftnms. Our purpose is to examine whether ftnms
are more likely predictors of the structure of evolved errors than nms. That
this should be the case has been suggested by the work of [1]. Figures 3a
and b shows the probability distribution for the largest correlations taken over
the five fastest growing ftnms and taken over the five fastest growing nms
respectively. The probability distribution for the correlations with ftnm 1
and with nm 1 are displayed in Figures 3c and d. All diagrams are for the
viscous case; very similar results are found for the inviscid case (not shown).

It is clear that there is considerable spread in the correlations for the 6
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Figure 2: Pattern correlations (Ac) between the dominant ftnms and the
100 evolved random errors in both inviscid and viscous cases during the
periods from 20 to 21, 22, . . ., 26 April 1989. (a). The mean (solid) and
mean ± the standard deviation (dashed) of the largest correlations taken
over the five fastest growing ftnms (viscous—thick, inviscid—thin). (b). As
in (a) but for the correlations between the 100 evolved random errors and
ftnm 1.
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day period ending on 26 April. However, the correlations taken over the five
fastest growing ftnms and the correlations with ftnm 1 are generally high.
The average correlation taken over the five fastest growing ftnms is about
0.6, and the mean correlation with ftnm 1 is slightly larger than 0.5 (Figs.
2a and b). The correlations taken over the five fastest growing nms and the
correlations with nm 1 tend to be lower than with the respective ftnms.
They are nevertheless significant and indicate that it may be possible to
obtain a reasonable representation of evolved error fields through expansions
in terms of a subset of the faster growing nms [1].

5 Conclusions

We have applied Arnoldi methods for generating leading nms and ftnms for
observed Southern Hemisphere atmospheric basic states during April 1989.
We have described the filtering techniques needed to prepare the initial per-
turbations for starting the Arnoldi process for both nms and ftnms. The
iterative methods are capable of yielding the leading eigenvalues and eigen-
vectors to high accuracy.

The structural organisation of initially random errors evolving in a ba-
rotropic tangent linear model, with time-dependent basic states taken from
observations, has been examined for cases of block development. The statis-
tics of 100 evolved errors have been studied for six day periods and compared
with the growth and structures of fast growing nms and ftnms. The ampli-
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Figure 3: The probability distributions of correlations between the 100
evolved random errors on 26 April and ftnms for the period 20 to 26 April for
the viscous case. (a). Shown are the probability distributions for the largest
correlations taken over the five fastest growing ftnms. (b) As in (a) but
taken over the five fastest growing nms. (c). The probability distributions
for the correlations with ftnm 1. (d). As in (c) but for nm 1
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fication factors of most random errors are comparable to those of the fastest
growing ftnm for the same time interval. The ftnms are shown to provide
a good representation of the statistics of error growth with mean pattern
correlation between the 100 error fields and the dominant ftnms increasing
to a value close to 0.6 or larger after six days.
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