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Iterative methods for Lyapunov vectors and
singular vectors and atmospheric predictability
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Abstract

Iterative methods are used to generate Lyapunov vectors (lvs) and
singular vectors (svs). Their roles in describing atmospheric error
growth and predictability are studied. lvs are produced by evolving
a set of initially random perturbations and using a modified Gram-
Schmidt re-orthogonalisation to ensure their orthogonality. The struc-
tures of lvs and svs, and finite-time normal modes (ftnms), are com-
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pared with patterns of 100 errors evolving in a barotropic tangent
linear model.
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1 Introduction

We use iterative methods to generate Lyapunov vectors (lvs) and singular
vectors (svs) and examine their roles in atmospheric error growth and pre-
dictability. These perturbations are studied using the barotropic tangent
linear model with time dependent basic states taken from observations. lvs
are obtained by evolving a set of initially random perturbations and using
a modified Gram-Schmidt re-orthogonalisation to ensure the orthogonality
of the lvs. We discuss the relative merits of generating svs using Arnoldi
or Lanczos methods compared with explicit construction of the propagator
matrix and singular value decomposition. The structures of lvs and svs, and
finite-time normal modes (ftnms), are compared with patterns of evolved
random errors. Our aim is to determine the type of perturbations which
can efficiently represent analysis errors and that are likely to be useful for
constructing initial ensembles for ensemble weather forecasts [4, 5, 2].

Section 2 describes iterative methods for constructing lvs and svs while
in Section 3 we study the structures and amplification of lvs, svs and ftnms
during atmospheric blocking. In Section 4 we present pattern correlations
between evolved random errors and dynamical vectors and our conclusions
are summarised in Section 5.

2 Singular Vectors and Lyapunov Vectors
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2.1 Model description

We use the spectral barotropic tangent linear model, described in detail in
Section 2 of [7] for studying lvs and svs and error growth. With x denoting
the column vector of real and imaginary parts of spectral coefficients of per-
turbation fields, the tangent linear spectral equations can be written in the
form

dx(t)

dt
= M(t)x(t), (1)

where M(t) is the tangent linear operator evaluated on the observed trajec-
tory X(t). The formal solution of equation (1) is

x(t) = G(t, t0)x(t0), (2)

where G(t, t0) is called the propagator. As described in [7] our horizontal
resolution is specified by a rhomboidal truncation wave number R = 15, so
that spectral components have zonal wave number |m| ≤ 15, and total wave
number l ≤ |m| + 15. We use a half-hour time step to solve our equations
using a leap frog scheme and the results are for both the inviscid case and a
case with a typical magnitude of the viscosity. Comparison of the respective
results gives an indication of the sensitivity to dissipation. In the viscous case,
we use a combination of a linear drag (ηζ) and a ∇4 diffusion (η′∇4ζ), where
ζ is the vorticity; the coefficients of viscosity are chosen as η = 8.4× 10−7s−1

and η′ = 2.5 × 1016m4s−1. We use 300-mb streamfunction fields taken from
daily observations and linearly interpolated to obtain the time-dependent
basic states needed every half-hour.
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2.2 Singular vectors

Singular vectors are norm dependent structures which are used at some
weather prediction centres as perturbations in ensemble forecasts [4, 2]. For
the Euclidean inner product 〈x;y〉, the norm of the perturbation at time t
is given by

‖x(t)‖2 = 〈x(t);x(t)〉 =
〈
G†(t, t0)G(t, t0)x(t0);x(t0)

〉
, (3)

where G†(t, t0) denotes adjoint operator or Hermitian conjugate matrix with
respect to the Euclidean inner product. The operator G†(t, t0)G(t, t0) is
symmetric and has right eigenvectors vν (ν = 1, 2, . . . , n) and left eigenvec-
tors uν each of which form a complete orthonormal basis set. The singular
vectors of G(t, t0) satisfy the equations

G†(t, t0)G(t, t0)v
ν = (σν)2vν ; G(t, t0)G

†(t, t0)uν = (σν)2uν . (4)

where the real eigenvalues σν ≥ 0. The σν are the singular values of
G(t, t0). The singular vectors and values can be calculated by iterative solvers
based on the Arnoldi method [3, 6] or Lanczos methods [4]. The action of
G†(t, t0)G(t, t0) is equivalent to integrating the linearised equations (1) or (2)
from time t0 to t, and followed by integrating the corresponding adjoint equa-
tions backward from t to t0. The dominant singular values and vectors can be
approximated by repeating this process. Both Arnoldi and Lanczos meth-
ods are variants of Krylov subspace methods and while they are efficient
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for calculating svs for large systems of differential equations they need cor-
responding adjoint equations which may not be readily available. Since the
operator G†(t, t0)G(t, t0) is symmetric, the Lanczos method is more efficient.

When the dimension of G(t, t0) is not too large, an alternative strategy,
which does not require the formulation of adjoint equations, is to calculate
the matrix form of propagator and solve eqs. (4). The propagator may be
constructed by integrating forward in the tangent linear model n unit vec-
tors xi(t0) = ei where ei

j = δij with δ the Kronecker delta function. The
propagator then is

G(t, t0) = (x1(t, t0),x
2(t, t0), . . . ,x

n(t, t0)).

If x in Equation (1) consists of spectral coefficients of vorticity then the
norm squared (3) is the enstrophy (en). Similarly streamfunction spectral
coefficients give streamfunction (sf) (squared) norm and velocity components
give the kinetic energy (ke) norm. We shall need to study svs in each of
these norms and we refer to them as en svs, sf svs and ke svs. We shall also
need to calculated the eigenvectors of the propagator which are the ftnms
of [7]; these are obtained using Arnoldi methods as described there.

2.3 Lyapunov vectors

A commonly used method of calculating lvs is to compute the left svs uν for
a large time interval t−t0; uν will converge to lvs when t−t0 → ∞. Here we
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use an iterative method which consists of evolving a set of initial orthonormal
vectors pν(t0) (ν = 1, 2, . . . , k and k ≤ n), chosen at random in the tangent
space T n(t0) at X(t0) by integrating the perturbation equation (1) along the
observed basic state flow. This method has been shown to be cheaper and
easier to implement. To save computing time, k can be chosen very small.
Here we choose k = n and all the lvs are calculated in this case. This kind of
method has been used for calculating global Lyapunov exponents (les) [1].

Since p1 has the largest growth rate, all the perturbations will ulti-
mately tend towards the most unstable direction associated with the largest
le. To prevent this from happening, it is necessary to perform a Gram-
Schmidt orthogonalisation from time to time. In practice, we always carry
out a modified Gram-Schmidt re-orthogonalisation which involves a double
re-orthogonalisation at each time step. This ensures that at any time t the
vectors pν(t) form an orthonormal set of vectors evolving in the tangent
space.

After an initial transient period, we have a set of orthonormal vectors
pν(t) that characterise the local directions of stretching and contraction of
perturbations. We call this set of orthonormal vectors pν(t) Lyapunov vectors
(lvs) at time t. In this paper, the instantaneous and finite-time growth rates
of the lvs are called local Lyapunov exponents and finite-time Lyapunov ex-
ponents respectively. The finite-time Lyapunov exponents can be calculated
as Lν(t2, t1) = 1

t2−t1
ln ‖pν(t2)‖

‖pν(t1)‖ , where t2−t1 = J∆t (J is a positive integer, ∆t

is a small integration time step). Clearly Lν(t2, t1) depend on t1, t2 and po-
sition on the trajectory X(t); they measure the average perturbation growth
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over a given interval t2 − t1. The global les are recovered by taking the limit
t2 → ∞. When J = 1, we have the local Lyapunov exponents which are
denoted by Lν(t). Thus

Lν(t) =
1

∆t
ln

‖pν(t+ ∆t)‖
‖pν(t)‖ . (5)

Both pν(t) and Lν(t) are local properties of the dynamical system. For me-
teorological and climate applications, the local and finite-time growth rates
are usually more relevant than global exponents. Global Lyapunov expo-
nents only measure the long-time average exponential growth rates along
different directions in the phase space. In theory, lvs at time t should be
calculated by starting integrations of both nonlinear and linearised equa-
tions from −∞. lvs are the unique local properties of dynamical system
and any unrestricted perturbations will eventually converge to the first lv
(lv 1) [5, 2]. The long-time average growth rates are given by corresponding
global les, which are ordered from largest to smallest, so L1 ≥ L2 ≥ · · · ≥ Ln,
and their local growth rates are described respectively by the local les
L1(t), L2(t), . . . , Ln(t). However, at any time t, the local growth rate of lv 1
is not always largest, although its long-time average growth rate (L1) is the
largest.
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3 Properties of LVs, SVs and FTNMs

Here we compare the properties and evolutions of svs and lvs during the
period between 20 to 26 April 1989. During this period, blocking high-
low dipoles formed at the longitudes of eastern Australia (150◦E) and in
the central Pacific (120◦W ). By 24 April the eastern Australian block had
amplified and caused a split in the jet stream while by 26 April the central
Pacific block had developed. We calculate ke svs, sf svs and en svs for
this period. The results shown here are for the inviscid case. The results for
the viscous case are very similar.

The svs in each of the three norms for the optimisation period between 20
and 21, . . ., 25 to 26 April have been calculated (not shown). In contrast to
the sensitive norm dependence of the initial svs, the evolved svs on 26 April
are much more similar in their structures. By 26 April, all the evolved svs 1
have dipole or multipole structures, of similar scales to the central Pacific
block, which are focussed in the blocking region near 120◦W . In fact, similar
evolved sv structures are obtained for shorter optimisation times ending on
26 April. These structures are also quite similar to the structure of the first
finite-time normal mode (ftnm) for the period from 20 to 26 April shown
in Figure 1d. ftnms are the eigenvectors of the propagator [2]. The evolved
ke svs 1 for 23–26 April and 20–26 April are displayed in Figures 1a and b
respectively. Note that all the vectors shown in Figure 1 are scaled to have
similar amplitudes for comparison.
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Figure 1: The streamfunctions of dominant dynamical vectors on 26 April
1989 in the inviscid case. Shown are (a) the evolved ke sv 1 for 23 to 26
April, (b) the evolved ke sv 1 for 20 to 26 April, (c) lv 1 on 26 April and
(d) ftnm 1 for 20 to 26 April 1989.
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Next, we examine the structures of dominant lvs in late April. As an
example, Figure 1c shows the structures of the leading lv on 26 April. The
leading lv is a local property of the system, it depends on time, and is associ-
ated with the largest global Lyapunov exponent. That is, over a sufficiently
long period of time it will have the largest average growth rate of all the
Lyapunov vectors. These Lyapunov vectors have been obtained by starting
with random initial perturbations on 26 March 1989, integrating the tangent
linear model forward and using the iterative method to obtain the lvs and
global Lyapunov exponents. In principle, the integration should start from
−∞, but in practice a month is sufficient time.

lv 1 on 26 April has significant amplitude in the blocking region between
60◦W and 120◦W ; however, it also has a number of significant centres outside
this region. On the whole, it appears to be less similar in structure to the
evolved svs 1 (e.g. Figures 1 a and b) than are the evolved svs 1 to each other
and to ftnm 1. This is confirmed by calculating the pattern correlations
between lv 1 and the evolved svs 1 and ftnm 1 (not shown).

We now turn to the amplification factors of svs, lvs and ftnms. In
the sf norm, Figure 2a shows the amplification factors between 20 and 26
April for ftnm 1, lv 1, en sv 1, ke sv 1 and sf sv 1 in the inviscid case.
Figure 2b gives the corresponding singular values for svs 1 in each of the three
norms in the inviscid case. These singular values are also the amplification
factors of svs 1 in the respective norms. Also shown in Figure 2a are the
mean and mean ± standard deviation of 100 amplification factors of 100
initial randomly generated error fields in the sf norm in thick solid and thick
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dashed lines respectively. These random error fields, which are generated on
20 April, are chosen from a Gaussian distribution in which the magnitudes
of the streamfunction spectral coefficients are proportional to (2l+1)−1; that
is, |ψml| ∼ 1

2l+1
. Here m is zonal wave number, l is total wave number and

ψml are the streamfunction spectral coefficients. The corresponding kinetic
energy spectra are then consistent with typical estimates of 2-day forecast
errors.

We note that the amplification factors of ftnms are just the magnitudes
of the corresponding eigenvalues. The amplification factors of lvs 1 from
20 April to successive days have been calculated from the local Lyapunov
exponents during these periods. The results show that ftnm 1 and lv 1
have very similar amplification factors in late April although, as we have
noted, there are significant structural differences between ftnm 1 and lv 1
during this period. We also note from Figure 2a that ftnm 1 and lv 1 have
similar, but slightly larger, amplification factors than the mean amplification
factor of the 100 initially random errors in the sf norm. Also in the sf norm,
the amplification factors of ke sv 1 and sf sv 1 are much larger than for
lv 1 and ftnm 1 after a few days. After about three days the amplification
factors of ke sv 1 and sf sv 1 are about an order of magnitude or more larger
than the mean amplification factor of 100 initially random errors. However,
in the sf norm, the amplification factors of en sv 1 are lower than the
mean amplification factor of 100 initially random errors in either the inviscid
or viscous case. As expected, in both the inviscid and viscous cases, the
amplification factors of svs 1 in their respective norms are much larger than
those of ftnm 1 and lv 1 as shown in Figure 2b.
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Figure 2: The amplification factors of dominant dynamical vectors in the
inviscid case during periods from 20 to 21, 22, . . ., 26 April 1989. Shown
are (a) amplification factors of ftnm 1 and lv 1, amplification factors in sf
norm of en sv 1, ke sv 1 (scaled by 0.2), sf sv 1 (scaled by 0.2) and the
mean of 100 evolved errors (thick solid line) and mean ± standard deviation
of 100 evolved errors (thick dashed lines) in the inviscid case. Also shown in
(b) are singular values of en sv 1, ke sv 1, sf sv 1 in the inviscid case.
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4 Statistics of Error Growth

In this section, we determine the statistics of pattern correlations (calculated
over the Southern Hemisphere) between 100 evolved, initially random, error
fields and svs, lvs and ftnms. The initial random error fields are generated
on 20 April as described in Section 3. The error fields are evolved in the
tangent linear model out to 26 April. The mean (solid) and mean ± standard
deviation (dashed) of the pattern correlations between each of the 100 error
fields and lvs are depicted in Figure 3a; we show these quantities for the
largest correlations taken over the first five lvs and for both the inviscid
(thin lines) and viscous (thick lines) cases.

We note that in Figure 3a, the mean and mean ± standard deviations
increase monotonically with time. There is little difference between the vis-
cous and inviscid results in Figure 3a. There are generally higher correlations
with lv 1 than lvs 2 to 5 (not shown), this is a reflection of the tendency for
arbitrary initial disturbances to turn towards the leading Lyapunov vector.
Figure 3a also shows (in the viscous case) the mean of the largest pattern
correlations, taken over the five fastest growing ftnms, with the 100 evolved
error fields (thick dot-dashed line). We note that this mean is significantly
higher (by one standard deviation, in fact) than for the mean involving the
lvs.

Similarly, the mean of the pattern correlations with ftnm 1 is consider-
ably higher than the mean with lv 1 except on 24 April when they are the
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Figure 3: Pattern correlations (Ac) between the dominant lvs, ke svs and
the 100 evolved random errors in both inviscid and viscous cases. Shown
are (a) the mean (solid) and mean ± the standard deviation (dashed) of the
largest correlations taken over the five fastest growing lvs (viscous—thick,
inviscid—thin) during the periods from 20 to 21, 22, . . ., 26 April 1989; also
shown is the mean (thick dot-dashed) of the largest correlations taken over
the five fastest growing ftnms in the viscous case; (b) As in (a) but for ke
svs replacing lvs.
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same (not shown). In fact, on 24 April ftnms 1 and 2 change role, with
a larger mean pattern correlation between the 100 error fields and ftnm 2
than with ftnm 1 (not shown). These results indicate that initially random
error fields that have only seen the tangent linear operator for a relatively
short period of several days are better represented on average, in terms of
dominant FTNMs for this same time interval, than by dynamical structures
that have evolved from t0 → −∞ (dominant Lyapunov vectors).

Next, we present the statistics of pattern correlations between the 100
evolved error fields and svs in the ke, en and sf norms. Figures 3b depicts
the statistics for the largest pattern correlations taken over the five fastest
growing svs in the ke norm and for both the viscous and inviscid cases.
Again there is, in general, little difference in the results with and without
viscosity, the statistics of pattern correlations increase monotonically with
increasing time interval. We note that the mean pattern correlations with
svs in the ke norm and with ftnms are, in general, very similar to each
other. We have also found that mean pattern correlations with svs in the sf
norm are very similar to those in the ke norm and slightly larger than those
with svs in the en norm. These mean pattern correlations are also larger
than those with lvs shown in Figure 3a.

From the results presented in this section we can conclude that, after
a few days, evolved, initially random, errors take up structures that are
most similar to dominant svs in the ke or sf norms or the dominant ftnms.
However, we know that the dominant svs in sf and ke norms grow much too
rapidly for the error fields to follow their time evolution. The amplification
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factors of the error fields are more closely similar to those of the dominant
ftnms and lvs.

5 Conclusions

In this paper, we have discussed and used iterative methods for producing
svs and lvs efficiently. We have compared the structures and evolutions
of svs and ftnms with lvs growing on observed space-time basic states
within a barotropic tangent linear model. The time-dependent basic states
have been obtained by linear interpolation of observed daily 300-mb flow
fields. We have focussed on synoptic situations in the Southern Hemisphere
when blocks formed, amplified and decayed in the regions of Australia-New
Zealand or in the central Pacific in April 1989. The growth of ensembles of
100 random initial errors have been analysed during this period of blocking.

The initial svs are found to depend sensitively on the specified norm.
However, after a few days, the structures of the leading evolved svs in the ke,
en and sf norms, are in general quite similar and also similar to some of the
dominant ftnms that are norm independent. For optimisation times of six
days or less, the evolved svs and ftnms are, in general, significantly different
from the dominant lvs on the same day. Nevertheless, amplification factors of
the first ftnms and first lvs are very similar, and also similar to, but slightly
larger than, the mean amplification factor of 100 initially random errors in
the sf norm, while the amplification factors in the sf norm of ke svs 1 and
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sf sv 1 are much higher. For longer optimisation times, the first svs and
the first ftnm increasingly turn towards the leading lv with convergence
achieved within a month. We have examined the structural organisations of
100 initially random errors and compared their patterns with svs, lvs and
ftnms.
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