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Determination of velocity and stress
discontinuities in quasi-static granular flows
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Abstract

In quasi-static flows of granular materials, there often exist stress
and velocity discontinuities in the material. However, existing numeri-
cal techniques are generally not capable of modelling these discontinu-
ities satisfactorily. In this paper, we develop a sophisticated numerical
technique for simulating the quasi-static flow of granular materials in
the presence of stress discontinuities. Based on the double-shearing
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model, the governing equations consist of four highly nonlinear par-
tial differential equations with two families of characteristic lines. We
firstly transform the partial differential equations into a set of ordi-
nary differential equations using the method of characteristics. Then,
a computation scheme is developed to determine the characteristic
lines, the stress discontinuity lines and the stress and velocity fields.
The method is then applied to study the flow of granular materials in
silos.
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1 Introduction

A granular material can be defined as a collection of a large number of dis-
crete solid particles in contact with each other. Some examples of granular
materials are mineral products, ore, sand, soil, grains and chemical powders.
The study of granular flows is important to the solution of a wide range of
scientific and technological problems related to material handling, pneumatic
transport, flows of slurry in pipes, mineral processing, stability of open pits,
sediment transport in rivers, and etc.

Granular materials are neither solid nor liquid as commonly understood.
Under certain conditions, a granular material can behave like a solid. How-
ever, when the stress state satisfies the yield condition, the so-called quasi-
static flow occurs and the material yields along stress characteristics and flows
as blocks, each consisting of many granules, moving relative to one another
along thin slip lines. If the deformation occurs rapidly enough, the so-called
rapid flow regime occurs and the entire mass of material moves independently
such that grains are in relative motion with even their nearest neighbours.
Due to this dual nature, granular flows are extremely complex and the exist-
ing theories of solid mechanics and fluid dynamics are not directly applicable
to this subject.

Over the last few decades, extensive research has been carried out to
study the flow of granular materials. Early research mainly focused on ex-
perimental investigation and deriving approximate analytical methods and
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empirical formulae suitable for engineering design [6, 11, 12, 14]. In the last
two decades, many researchers have investigated granular flows theoretically
and a number of mathematical models have been developed for analysis. Es-
sentially, these models can be classified into two categories: discrete models
and continuum models.

Discrete models determine the overall macroscopic mechanics behaviour
of granular flows by following the motion of individual particles either pre-
cisely or statistically. The major type of discrete models is the so-called dis-
crete element model, which is based on the molecular dynamics and was first
applied to simulate granular flows by Cundall [7] and later by others [5, 20].
Two different types of discrete elements have been developed, namely the
hard particle model [4] and the soft particle model [19]. The hard particle
model generally is only applicable to rapid flows with low bulk density. While
the soft particle model is applicable to both rapid and slow flows. Statisti-
cal mechanics methods [1] have also been incorporated into discrete element
models and in this new kind of models, the flow of particles is simulated by
either the Markov process [15] or the Monte Carlo method [10].

The bulk of the literature on granular flow is concerned with the con-
tinuum models. In such kind of models, the discrete nature of the material
and details of inter-particle interactions are not considered. The constitutive
nature is hidden in phenomenological coefficients involved in the constitutive
equations. The macroscopic behaviour of granular flows is then described by
differential forms of mass, momentum and energy conservation laws. Over
the last couple of decades, two types of theories have been developed, namely
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the statistical collision theory for rapid flows and the frictional plasticity the-
ory for slow flows. The collision theory is based on micro-mechanics analysis
of particle collision and statistical averaging [2, 3, 8]. The frictional plastic-
ity theory is based on the assumption that the material flows according to a
constitutive law if the stress state satisfies a yield condition. It is generally
believed that the plasticity theory can be used to model slow granular flows.
The equations, which distinguish granular flows from other kinds of plasticity
flows, are the yield condition and the constitutive equations. Many differ-
ent yield conditions have been established [9, 13] and two different theories
have been proposed to derive the constitutive equations for granular mate-
rials, i.e, the conventional plastic flow rule theory [16, 17] and the so-called
double-shearing theory originated by Spencer [18] and developed by Spencer
and others. In this paper, we study the quasi-static granular flow using the
double shearing theory. The basic form of the double-shearing flow theory
is based on the Mohr-Coulomb yield condition. If the stress state in a gran-
ular material reaches the yield condition, flow occurs by shearing along two
families of planes, namely the α- and β- characteristics. These two planes
are inclined at angles ±ε (ε = π/4 + φ/2) to the direction of the principal
stress σ1 where φ is the angle of material internal friction, as shown in Fig-
ure 1. The double shearing theory assumes that the complete deformation at
any point of the material consists of two shearing motions occurring simul-
taneously on the α- and β-lines and which are superposed one on another.
More specifically, in the rectangular Cartesian coordinate systems as shown
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Figure 1: Coordinate system, α- and β- lines.

in Figure 1, the double-shearing assumption can be formulated by

∂v

∂sα
= aeβ,

∂v

∂sβ
= beα, (1)

where the first set of coordinate system Oxy is fixed in space while the second
set Oξη is fixed on the particle and is in motion relative to the first set with
rotating speed Ω and translational velocity (vx, vy) , sα and sβ are measured
along the slip-line, eα and eβ denote unit vectors along the direction of α
and β respectively. The rest of the paper is organised as follows. In the
following section, the equations governing the stress field and velocity field
are presented. In Section 3, a numerical method for the determination of the
stress discontinuity lines is developed. In Section 4, the method is used to
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study the flow of granular materials through silos. Conclusions are made in
Section 5.

2 Basic field equations

Consider the plane flow in the Oxyz rectangular Cartesian coordinate system
with the x-axis being vertical upward. The equations of motion for the quasi-
static flow are

∂σxx

∂x
+
∂σxy

∂y
− ρg = 0,

∂σxy

∂x
+
∂σyy

∂y
= 0. (2)

If σ1 and σ2 denote the maximum and minimum principal stress components
namely (σ1 ≥ σz ≥ σ2) and if we assume that the direction of σ1 makes an
angle of ψ with the x-axis, then we have

σxx = −p + q cos 2ψ, σyy = −p− q cos 2ψ, σxy = q sin 2ψ, (3)

where p and q are respectively

p = −σ1 + σ2

2
, q =

σ1 − σ2

2
. (4)

Suppose that the material is cohesionless and obeys the Coulomb yield cri-
terion. Then, the stress state satisfies

q = p sinφ, (5)
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where φ is a material parameter, namely the angle of internal friction. On
substituting equations (3) into equations (2), we can deduce in the usual way
the stress equations in terms of the arc lengths sα and sβ along the α and β
characteristics defined respectively by

dy

dx
= tan(ψ − ε) -α line (6)

dy

dx
= tan(ψ + ε) -β line (7)

Thus (2) becomes

∂p

∂sα

+ 2p tanφ
∂ψ

∂sα

= − ρg

cos φ
sin(ψ + ε), (8)

∂p

∂sβ
− 2p tanφ

∂ψ

∂sβ
=

ρg

cosφ
sin(ψ − ε). (9)

These two equations together with equations (6) and (7) constitute a system
of four equations for the determination of the characteristic field and the p
and ψ values along the characteristic lines.

In order to calculate the velocity field corresponding to the stress field,
we adopt the so-called double shearing assumption as formulated in (1). The
velocity equations based on this assumption have been shown to be

∂u

∂x
+
∂v

∂y
= 0, (10)

(
∂u

∂x
− ∂v

∂y
) sin 2ψ−(

∂v

∂x
+
∂u

∂y
) cos 2ψ = sin φ(

∂u

∂y
− ∂v

∂x
+2u

∂ψ

∂x
+2v

∂ψ

∂y
). (11)
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3 Determination of stress discontinuity lines

Consider the stress state around the discontinuity line as shown in Figure 2.
Under steady state condition, the normal stress σnn and shear stress σnt must
be continuous, namely

σ+
nn = σ−

nn, σ+
nt = σ−

nt (12)

where superscripts + and − refer to regions on either side of the discontinuity
line as shown in Figure 2.

Suppose the normal n of the discontinuity line L is inclined at an angle η
to the x-axis as shown in Figure 2. Then on either side of the discontinuity
line,

σnn =
σxx + σyy

2
+
σxx − σyy

2
cos 2η + σxy sin 2η, (13)

σnt = σxy cos 2η − σxx − σyy

2
sin 2η, (14)

where for simplicity, we have dropped the superscripts ± from the quantities
σ, p, q, ψ and η. Substituting (13)–(14) into (12) and using (3) and (5), we
have

p+[−1 + sinφ cos(2ψ+ − 2η)] = p−[−1 + sinφ cos(2ψ− − 2η)], (15)

p+ sin(2ψ+ − 2η) = p− sin(2ψ− − 2η). (16)
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Figure 2: Forces acting on an element in the presence of discontinuity.
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These are the contact equations for the discontinuity line L defined by

dy

dx
= tan ζ = tan(η +

π

2
). (17)

Depending on the boundary conditions, discontinuity lines can be classified
into α- and β- discontinuity lines. In the rest of this section, we demonstrate
the determination of the α- discontinuity line.

Figure 3 shows the essential feature of an α- discontinuity line Lα defined
by (17). Suppose that solutions of p+, ψ+ on the ‘+’ side have been ob-
tained and that the α-line from the ‘-’ side intersects the discontinuity line
at point R with coordinates (x, y), then there are five unknowns at point R,
namely x, y, p−, ψ− and η(x, y). The equations governing these unknowns
are the discontinuity contact equations (15)–(16), the discontinuity line equa-
tion (17), the α-characteristic line equation (6) and the stress equations along
the α-characteristics (8).

Let D and p denote a previously calculated point on the discontinuity line
and the α-line respectively. Then from the discontinuity line equation (17),
the α-characteristic line (6) and the stress equation along α (8), we have

y − yD = tan(η +
π

2
)(x− xD), (18)

y − yp = tan(ψ− − ε)(x− xp), (19)

cos(ψ− − ε)(p− − pp) + 2 tanφ cos(ψ− − ε)p−(ψ− − ψp)
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= − ρg
cos φ

sin(ψ− + ε)(x− xp). (20)

Further, from equation (16), we have

p− =
p+ sin(2ψ+ − 2η)

sin(2ψ− − 2η)
. (21)

Solving (18) and (19) yields

x =
xp tan(ψ− − ε) − xD tan(η + π

2
) + yD − yp

tan(ψ− − ε) − tan(η + π
2
)

, (22)

y =
[(xp − xD) tan(ψ− − ε) − yp] tan(η + π

2
) + yD tan(ψ− − ε)

tan(ψ− − ε) − tan(η + π
2
)

. (23)

Substituting (21), (22) and (23) into (15) and (20) yields a system of two
nonlinear equations in terms of two unknowns η and ψ−, namely

F1(η, ψ
−) = 0, (24)

F2(η, ψ
−) = 0. (25)

Newton’s method can then be used to solve (24)–(25) for η and ψ−. Once
η and ψ− are determined, x, y and p− can be calculated from (22), (23)
and (20) respectively.

Similar formulae have also been developed for the determination of the
β- discontinuity lines. The corresponding velocity field is calculated within
each computational domain separately using the method in [6].
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4 Numerical example

The numerical scheme developed has been applied to study the stress dis-
tribution and velocity pattern of granular flows in hoppers in the presence
of stress discontinuity. Figures 4–7 show the characteristic mesh, stress field
and velocity field for hopper half-angle θw = 23o, φ = 30o and wall friction
φw = 11.5o. It is obvious that the stress discontinuity propagates over the
whole region. Several kinds of distinct flow zones have also been predicted.

Figure 7 shows the effect of wall friction on wall pressure for θw = 13o. It
is noted that increasing the angle of wall friction will result in a decrease in
σnn while there seems to be no effect on the jump. Our knowledge of hopper
pressure distribution indicates that the result is correct. In comparison with
the finite element model by Schmidt and Wu [17], the method presented
in this paper has a new feature that it is capable of simulating the stress
discontinuity in the flow region.

5 Conclusions

A numerical technique has been developed to solve the hyperbolic partial dif-
ferential equations arising from the formulation of the double-shearing theory
for granular flows. The essential features of stress distribution and velocity
pattern in hoppers are computed in the presence of stress discontinuity. The
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Figure 4: Characteristic mesh (thick lines indicate discontinuities).
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Figure 5: Principal stress field in the presence of discontinuity.
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Figure 6: Velocity field in the presence of discontinuities.
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development of the present numerical technique makes it possible to gener-
ate numerical solutions for many problems using the perfect plasticity theory
based on the double shearing assumption. In addition, the numerical tech-
nique is capable of determining the stress discontinuity, which is important
because it is one of the special features of granular flows which existing contin-
uum models are not able to determine. However, it shall be mentioned that,
the analysis given in the paper is for two-dimensional flows only. Although
it is possible to generalise the method to axially symmetric problems, it is
impossible or at least extremely difficult to generalise the method to general
three-dimensional problems.
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