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Abstract

A monotone domain decomposition algorithm for a nonlinear alge-
braic system, which is a finite difference approximation of a nonlinear
reaction-diffusion problem of parabolic type, is presented and is shown
to converge monotonically either from above or from below to a solu-
tion of the system. The algorithm is based on a modification of the
Schwarz alternating method and the method of upper and lower solu-
tions. Advantages of the algorithm are that the algorithm solves only
linear discrete systems at each iterative step, converges monotonically
to the exact solution of the system, and is potentially parallelisable.
Numerical experiments for a model problem from chemical engineering
are presented.
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1 Introduction

We are interested in nonlinear reaction-diffusion problems of parabolic type

−∇ · (D∇U) + Ut = −f(x, t, U) , x ∈ ω , t > 0 ;

U(x, 0) = ψ(x) , x ∈ ω̄ ;

U(x, t) = g(x, t), (x, t) ∈ ∂ω × (0, T ] ;

x ∈ Rk , ω̄ =
k∏

α=1

ω̄xα , ω̄xα = {0 ≤ xα ≤ rα} , (1)

where ω̄ = ω ∪ ∂ω , ∂ω is the boundary and ∇ is gradient operator in ω. We
assume that D = D(x, t) > 0 on ω̄ × [0, T ] for every T < ∞ and D, f , ψ
and g are sufficiently smooth functions.

Difference schemes satisfying the maximum principle are called monotone.
The monotonicity condition guarantees that systems of algebraic equations
based on such methods are well-posed. A major point about the nonlinear
monotone difference schemes is to obtain reliable and efficient computational
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algorithms for computing the solution. A fruitful method for the treatment
of these nonlinear schemes is the method of upper and lower solutions [3].
Initial upper and lower solutions can be constructed directly from the differ-
ence equation without any knowledge of the solution. Thus, this approach
simplifies considerably the search for the initial iteration as is often required
in Newton’s method.

Iterative domain decomposition algorithms based on Schwarz-type alter-
nating procedures received much attention for their potential as efficient al-
gorithms for parallel computing [5]. Boglaev [1], for solving two-dimensional
nonlinear reaction-diffusion problems of parabolic type, proposed the dis-
crete iterative algorithm which combines the monotone approach and the
iterative domain decomposition method based on the Schwarz alternating
procedure. The advantages of the algorithm are that the algorithm solves
only linear discrete systems at each iterative step, converges monotonically
to the exact solution of the system, and may be parallelised. The purpose of
this article is to extend the monotone domain decomposition algorithm from
Boglaev [1] on the nonlinear monotone difference schemes of parabolic type
in the canonical form.

Section 2 presents the nonlinear monotone difference schemes in the canon-
ical form and formulates the maximum principle. Section 3 constructs a
monotone domain decomposition algorithm for solving the nonlinear schemes
and proves its monotone convergence. The final Section 4 presents results
of numerical experiments for a model problem from chemical engineering,
where iteration counts and execution times between the monotone (undecom-
posed) iterative method and the monotone domain decomposition algorithm
are compared.
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2 Nonlinear difference scheme

On ω̄ and [0, T ], we introduce rectangular meshes ω̄h and ω̄τ , respectively,
and for simplicity assume that the mesh ω̄τ is uniform with the time step τ .
For solving (1), we consider the nonlinear implicit difference scheme in the
canonical form

Lu(p, t) = −f(p, t, u) + τ−1u(p, t− τ) , (p, t) ∈ ωh × (ω̄τ \ {0}) ,
u(p, 0) = ψ(p) , p ∈ ω̄h,
u(p, t) = g(p, t) , (p, t) ∈ ∂ωh × (ω̄τ \ {0}) , (2)

where ω̄h = ωh ∪ ∂ωh , ∂ωh is the boundary, and the difference operator L is
defined by

Lu(p, t) ≡ (Lh+1

τ
)u(p, t) , Lhu(p, t) ≡ d(p, t)u(p, t)−

∑
p′∈σ′ (p)

ap(p
′
, t)u(p

′
, t) ,

where σ
′
(p) = σ(p) \ {p}, σ(p) is a stencil of the scheme.

On each time level t, we make the following assumptions on the coefficients
of the spatial operator Lh:

d(p, t) > 0 , ap(p
′
, t) ≥ 0 , d(p, t)−

∑
p′∈σ′ (p)

ap(p
′
, t) ≥ 0 , (3)

where p ∈ ωh and p
′ ∈ σ′(p) .

On each time level t, introduce the linear problem

(L+ c)w(p, t) = f0(p, t) , p ∈ ωh , w(∂ωh, t) = g(∂ωh, t) , (4)

where c(p, t) ≥ c0 = const ≥ 0 , p ∈ ω̄h . We now formulate the maximum
principle for the difference operator L+c and give an estimate of the solution
to (4).
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Lemma 1 Let the coefficients of the difference operator Lh satisfy (3).

1. If a mesh function w(p, t) satisfies the conditions

(L+ c)w(p, t) ≥ 0 (≤ 0) , p ∈ ωh , w(∂ωh, t) ≥ 0 (≤ 0) ,

then w(p, t) ≥ 0 (≤ 0) , p ∈ ω̄h .

2. The following estimate of the solution to (4) holds true

‖w(t)‖ω̄h ≤ max{‖g(t)‖∂ωh , ‖f0(t)‖ωh/(c0 + τ−1)} , (5)

where ‖g(t)‖∂ωh ≡ maxp∈∂ωh |g(p, t)| , ‖f0(t)‖ωh ≡ maxp∈ωh |f0(p, t)| .

The lemma is proved in the same manner as in Boglaev [1] for the case
of two-dimensional problems.

3 Monotone domain decomposition

algorithm

We assume that f(x, t, U) from (1) satisfies the two sided constraints

0 ≤ fu ≤ c∗ , c∗ = const , (fu = ∂f/∂U) , (6)

where the assumption fu ≥ 0 is obtained via a change of variables.

On ω̄xα , α = 1, . . . , k , we set up nonuniform rectangular meshes

ω̄hxα = {x(iα)
α , 0 ≤ iα ≤ Nα ; x(0)

α = 0 , x(Nα)
α = rα} , α = 1, . . . , k .

Thus we represent the mesh

ω̄h =
k∏

α=1

ω̄hxα , ω̄h = ωh ∪ ∂ωh , (7)
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where ωh and ∂ωh are sets of interior and boundary mesh points, respectively.

By hyperplanes

{x1 = ρm ,m = 1, . . . ,M − 1 : ρ0 = 0 < ρ1 < · · · < ρM−1 < ρM = r1} ,

we decompose the mesh ω̄h intoM nonoverlapping rectangular subdomains ωhm,
m = 1, . . . ,M :

ω̄h =
M⋃
m=1

ω̄hm , ∂ωhm = γ0
m ∪ γm−1 ∪ γm , γ0

m = ∂ωh ∩ ω̄hm ,

γm = {ρm} × ω̄hy , ω̄hy ≡
k∏

α=2

ω̄hxα , ω̄hm ∩ ω̄hm+1 = γm ,

where the boundary ∂ωhm of ω̄hm consists of the boundaries γm−1, γm which
belong to the hyperplanes ρm−1 and ρm, respectively, and γ0

m which belongs
to the boundary ∂ωh. On ω̄h we introduce (M−1) interfacial subdomains ϑ̄hm,
m = 1, . . . ,M − 1 , with boundaries ∂ϑhm in the form

∂ϑhm = γcm ∪ γbm ∪ γem , γcm = ∂ωh ∩ ϑ̄hm ,
γbm = {ρbm} × ω̄hy , γem = {ρem} × ω̄hy , ρbm < ρm < ρem ,

where ϑ̄hm overlaps ω̄hm∪ω̄hm+1 . Figure 1 illustrates the domain decomposition
in the two dimensional case R2.

We assume that sizes of all the subdomains ω̄hm and ϑ̄hm allow to solve
Dirichlet boundary value problems based on the difference equation from (2).

3.1 Statement of domain decomposition algorithm

On each time level t ∈ ω̄τ \ {0} , we calculate iterates v(n)(p, t), p ∈ ω̄h as
follows.
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ρm−1 ρm

ρbm−1 ρem−1 ρbm ρem

-�-� ϑhmϑhm−1

ωhm−1 ωhm+1ωhm

Figure 1: Fragment of the domain decomposition.

1. On the whole mesh ω̄h, choose v(0)(p, t), p ∈ ω̄h satisfying the boundary
condition v(0)(p, t) = g(p, t) on ∂ωh.

Given v(n−1)(p, t), Steps 2 and 3 below generate v(n)(p, t).

2. For each main subdomain ω̄hm, solve the linear difference problem

(L+ c∗)z(n)
m (p, t) = −R(p, t, v(n−1)) , p ∈ ωhm ,

R(p, t, v(n−1)) ≡ Lv(n−1)(p, t) + f(p, t, v(n−1))− τ−1v(p, t− τ),(8)

with z
(n)
m (∂ωhm, t) = 0 , andR(p, t, v(n−1)) is the residual of (2) on v(n−1).

3. For each interfacial subdomain ϑ̄hm, solve the linear problem

(L+ c∗)z̃(n)
m (p, t) = −R(p, t, v(n−1)), p ∈ ϑhm , (9)

with z̃
(n)
m (∂ϑhm, t) defined by the mesh functions computed in Step 2.
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4. Compute the mesh function v(n)(p, t), p ∈ ω̄h , by piecing together the
solutions on the subdomains

v(n)(p, t) =

{
v(n−1)(p, t) + z

(n)
m (p, t) , p ∈ ω̄hm \ (ϑ̄hm−1 ∪ ϑ̄hm) ,

v(n−1)(p, t) + z̃
(n)
m (p, t) , p ∈ ϑ̄hm .

(10)

5. If the stopping criterion

‖R(t, v(n))‖ωh ≤ δ , (11)

is reached, then stop and set up v(p, t) = v(n∗)(p, t) , p ∈ ω̄h , otherwise
go to Step 2, where δ is a prescribed accuracy and n∗ is minimal subject
to (11).

Algorithm (8)–(11) can be carried out by parallel processing since on each
iterative step n the M problems (8) and the (M − 1) problems (9) can be
implemented concurrently.

3.2 Monotone convergence of algorithm (8)–(11)

On a time level t ∈ ω̄τ \ {0} , we say that v̄(p, t) is an upper solution with
respect to a given function v(p, t− τ) if it satisfies

Lv̄(p, t) + f(p, t, v̄)− τ−1v(p, t− τ) ≥ 0 , p ∈ ωh , v̄(∂ωh, t) ≥ g(∂ωh, t) .

Similarly, v(p, t) is called a lower solution with respect to v(p, t− τ) if it sat-
isfies the reversed inequalities. On each time level, upper and lower solutions
satisfy the inequality

v(p, t) ≤ v̄(p, t) , p ∈ ω̄h . (12)

We get the following convergence properties of algorithm (8)–(11).
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Theorem 2 Assume that the coefficients of the difference operator L in (2)
satisfy (3) and f(p, t, u) satisfies (6). Let v(p, t − τ) be given and v̄(0)(p, t)
and v(0)(p, t) be upper and lower solutions corresponding to v(p, t− τ). Then
the upper sequence {v̄(n)(p, t)} generated by (8)–(11) converges monotonically
from above to the unique solution v(p, t) of the problem

Lv(p, t) + f(p, t, v)− τ−1v(p, t− τ) = 0 , p ∈ ωh , (13)

and the lower sequence {v(n)(p, t)} generated by (8)–(11) converges monoton-
ically from below to v(p, t).

Proof: We consider only the case of the upper sequence. Let v̄(n−1) be an
upper solution. By the maximum principle in Lemma 1, from (8) we conclude
that

z(n)
m (p, t) ≤ 0 , p ∈ ω̄hm , m = 1, . . . ,M . (14)

From here, by the mean-value theorem and (6), we obtain from (8)

R(p, t, v(n)
m ) = −(c∗ − f (n)

u (p, t))z(n)
m (p, t) ≥ 0 , p ∈ ωhm ,

v(n)
m (p, t) = v̄(n−1)(p, t) , p ∈ ∂ωhm ,
v(n)
m (p, t) = v̄(n−1)(p, t) + z(n)

m (p, t) . (15)

Taking into account (14) and that v̄(n−1) is an upper solution, by the
maximum principle in Lemma 1, from (9) it follows that

z̃(n)
m (p, t) ≤ 0 , p ∈ ϑ̄hm , m = 1, . . . ,M − 1 . (16)

Similarly, from (9) we obtain the difference problem for ṽ
(n)
m = v̄(n−1) + z̃

(n)
m

R(p, t, ṽ(n)
m ) = −(c∗ − f (n)

u (p, t))z̃(n)
m (p, t) ≥ 0 , p ∈ ϑhm ,

with the boundary conditions ṽ
(n)
m (γcm, t) = g(γcm, t) , ṽ

(n)
m (γbm, t) = v

(n)
m (γbm, t)

and ṽ
(n)
m (γem, t) = v

(n)
m+1(γem, t) . Now from here, (15) and the definition of v(n)
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in (10), we conclude that

R(p, t, v(n)) ≥ 0 , p ∈ ωh \
M−1⋃
m=1

γb,em .

From the boundary conditions for v
(n)
m and ṽ

(n)
m , it follows that v(n) satisfies

the boundary condition in (2). Thus, to prove that v(n) is an upper solution
of problem (2), we have to verify that the last inequality holds true on the
interfacial boundaries γbm and γem, m = 1, . . . ,M−1 . We check this inequality
in the case of the left interfacial boundary γbm, since the second case is checked
in a similar way. From (8), (9), (14) and (16), we conclude that the mesh

function w
(n)
m = v

(n)
m − ṽ(n)

m satisfies the difference problem

(L+ c∗)w(n)
m (p, t) = 0 , p ∈ ϑhbm = ωhm ∩ ϑhm ,

w(n)
m (p, t) = 0 , p ∈ ∂ϑhbm \ γm , w(n)

m (p, t) ≥ 0 , p ∈ γm .

In view of the maximum principle in Lemma 1, v
(n)
m (p, t) − ṽ

(n)
m (p, t) ≥ 0 ,

p ∈ ϑ̄hbm . From here, (3), (10) and (15), and taking into account ṽ
(n)
m (γbm, t) =

v
(n)
m (γbm, t) , it follows that

R(p, t, v(n)) ≥ R(p, t, v(n)
m ) ≥ 0 , p ∈ γbm .

This leads to the fact that v(n) is an upper solution of problem (13).

For arbitrary p ∈ ωh , it follows from (14), (16) and (12) that the se-
quence {v̄(n)(p, t)} is monotonically decreasing and bounded below by v(p, t),
where v is any lower solution. Therefore, the sequence is convergent and it fol-

lows from (8) and (9) that lim z
(n)
m (p, t) = 0 and lim z̃

(n)
m (p, t) = 0 as n→∞ .

Now by linearity of the operator L and the continuity of f , we have also from
(8) and (9) that the mesh function v defined by v(p, t) = limn→∞ v̄

(n)(p, t) ,
p ∈ ω̄h , is an exact solution to (13). The uniqueness of the solution to (13)
follows from the maximum principle in Lemma 1 and (6). This proves the
theorem. ♠
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Theorem 3 Let the coefficients of the difference operator L in (2) sat-
isfy (3), f(p, t, u) satisfy (6), and v(0)(p, t) be an upper or lower solution.
If on each time level the stopping criterion (11) is satisfied, then for the
monotone domain decomposition algorithm (8)–(11), the following estimate
holds:

max
t∈ω̄τ
‖v(t)− u(t)‖ω̄h ≤ δT , (17)

where u(p, t) is the solution to (2). Furthermore, on each time level the
sequence {v(n)(p, t)} converges monotonically.

Proof: The difference problem for v(p, t) = v(n∗)(p, t) is

Lv(p, t) + f(p, t, v)− τ−1v(p, t− τ) = R(p, t, v(n∗)) , p ∈ ωh ,

with the boundary condition v(∂ωh, t) = g(∂ωh, t). From here, (2) and using
the mean-value theorem, we get a difference problem for w(p, t) = v(p, t) −
u(p, t):

(L+f (n∗)
u )w(p, t) = R(p, t, v(n∗))+τ−1w(p, t−τ) , p ∈ ωh , w(∂ωh, t) = 0 .

From here, using (5) and taking into account that according to Theorem 2,
the stopping criterion (11) is always satisfied, we have

‖w(t)‖ω̄h ≤ τ‖R(t, v(n∗))‖ωh + ‖w(t− τ)‖ω̄h ≤ τδ + ‖w(t− τ)‖ω̄h .

Since w(p, t) = 0 , we conclude that ‖w(t)‖ω̄h ≤ δT , t ∈ ω̄τ . Thus, we prove
the theorem. ♠

4 Numerical experiments

We apply the monotone domain decomposition algorithm (8)–(11) to the
nonlinear singularly perturbed parabolic problem

−µ2

(
∂2U

∂x2
1

+
∂2U

∂x2
2

)
+
∂U

∂t
= −U − 4

5− U
, (x1, x2, t) ∈ ω × (0, T ] ,
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U(x1, x2, 0) = 0 , (x1, x2) ∈ ω̄ ,
U(x1, x2, t) = 1 , (x1, x2) ∈ ∂ω × (0, T ] ,

ω = {0 < x1 < 1} × {0 < x2 < 1} ,

which models the biological Michaelis–Menten process without inhibition [2],
where µ is a small positive parameter. The solution to the reduced elliptic
problem (µ = 0) is Ur = 4 . For µ� 1 the problem is singularly perturbed [1]
and the solution increases sharply from U = 1 on ∂ω to U = 4 on the interior.
The solution to the parabolic problem approaches this steady state with time.

For the spatial differential operator, we use the central difference approx-
imation on the five point rectangular stencil, which satisfies (3). We employ
a layer adapted mesh of a piecewise uniform type [1]. If the parameter µ is
small enough, then the uniform mesh inside of the boundary layers is fine,
and the uniform mesh outside of the boundary layers is coarse. The central
difference scheme on the piecewise uniform mesh converges µ-uniformly to
the solution of the test problem. We can show that fu is bounded above and
below by c∗ = 1 and c∗ = 1/25 respectively.

We solve all linear systems in the monotone domain decomposition al-
gorithm (8)–(11) with the restarted gmres algorithm [4]. All experiments
were performed on a serial computer equipped with a 2.8 GHz Pentium 4
processor.

We consider balanced domain decompositions. A balanced domain de-
composition is one in which the mesh points are equally distributed among
the main subdomains. For balanced decompositions, the first and last inter-
facial subdomains each overlap the boundary layers. For a parallel imple-
mentation of the algorithm, balanced domain decompositions guarantee load
balancing of computational nodes.

For µ ≤ 10−2 the average convergence iteration counts over ten time levels
and execution times are shown in Table 1. All execution times are rounded to
the nearest second. Where there is some choice for the interfacial subdomain
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Table 1: Average convergence iteration counts and execution times with
balanced domain decompositions.

µ 10−2 10−3 10−4

N\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32
convergence iteration count

27
5.0

6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.2

5.0
6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.2

5.0
6.0
5.0

6.0
5.0

6.0
5.0

6.0
5.2

28
5.0

8.0
5.0

8.0
5.0

8.0
5.0

8.0
5.0

5.0
6.0
5.0

7.6
5.0

7.6
5.0

7.7
5.0

5.0
6.0
5.0

7.6
5.0

7.6
5.0

7.7
5.0

29
5.0

13.0
5.0

13.0
5.0

13.0
5.0

13.0
5.0

5.0
7.0
5.0

11.0
5.0

11.0
5.0

11.0
5.0

5.0
6.0
5.0

11.0
5.0

11.0
5.0

11.0
5.0

execution time (s)

27
1

1
1

1
1

1
1

1
1

1
1
1

1
1

1
1

1
1

1
1
1

1
1

1
1

1
1

28
7

10
10

9
10

7
8

6
7

9
6
9

7
8

6
7

6
6

8
6
8

7
8

6
7

5
6

29
60

220
147

196
142

131
96

92
74

67
84
101

110
98

76
69

63
59

66
72
103

110
97

78
75

63
59

widths, the results corresponding to minimal and maximal choices are written
above and below the line, respectively. The convergence iteration count for
each undecomposed problem with M = 1 is 5.0 . If maximal interfacial
subdomain widths are chosen, for N = 27 , the iteration count increases only
slightly with decomposition and for N ≥ 28 , the iteration count for each
decomposition is the same as for the undecomposed problem with M = 1 .
Consider now the corresponding execution times. For µ ≤ 10−3 the execution
times of Table 1 demonstrate that, for each value of N the decomposition
M = 32 with maximal interfacial subdomains reduces the execution time.

We now consider unbalanced domain decompositions with the interfacial
subdomains located outside the boundary layers. All unbalanced domain
decomposition experiments employ minimal interfacial subdomains. Aver-
age convergence iteration counts over ten time levels and execution times
are shown in Table 2. For µ = 10−2 the results are similar to those of
the corresponding balanced decompositions with minimal interfacial subdo-
mains. A comparison between the execution times of Table 1 and those of
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Table 2: Average convergence iteration counts and execution times with
unbalanced domain decompositions.

µ 10−2 10−3 10−4

N\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32
convergence iteration count

27 5 6 6 6 7 5 5 5 5 5 5 5 5 5 5

28 5 8 8 8 8 5 5 5 5 5 5 5 5 5 5

29 5 13 13 13 13 5 5 5 5 5 5 5 5 5 5

execution time (s)

27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

28 7 10 9 8 7 9 5 5 5 5 9 6 5 5 5

29 60 221 198 158 145 67 61 56 53 51 67 61 57 53 51

Table 2 shows that for µ ≤ 10−3 the algorithm executes more quickly with
unbalanced domain decomposition. For a parallel implementation of the al-
gorithm with unbalanced domain decompositions, load balancing could be
partially restored by solving the larger linear problems in parallel.

We draw the following conclusions with regard to the monotone domain
decomposition algorithm (8)–(11).

• For all values of µ and N , and all domain decompositions, the con-
vergence to the exact solution of the nonlinear difference scheme is
monotonic.

• For µ ≤ 10−3 the convergence iteration count is uniform with respect
to µ.

• For µ ≤ 10−3 there are certain domain decompositions under which
the algorithm executes more quickly than the undecomposed monotone
algorithm with M = 1 .
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• For µ ≤ 10−3 the algorithm executes more quickly when the domain
decomposition is unbalanced rather than balanced.

Acknowledgements: The author is very grateful to Dr Matthew Hardy
for his help with the implementation of the numerical experiments.

References

[1] I. Boglaev. Monotone iterative algorithms for a nonlinear singularly
perturbed parabolic problem. J. Comp. Appl. Math., 172:313–335, 2004.
doi:10.1016/j.cam.2004.02.010 C399, C401, C408
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