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The pressure accuracy of fractional-step
methods for the Navier-Stokes equations

on staggered grids

S. Armfield∗ R. Street†

(Received 1 June 2001, revised September 2002)

Abstract

Previous investigations of the time accuracy of the pres-
sure obtained with fractional step methods have shown it to
be first order in time, irrespective of the order of accuracy of
the method. In this paper a detailed analysis and investiga-
tion of the pressure accuracy for P1 and P2 type fractional
step methods on staggered finite volume grids is carried out.
It is shown that the standard P1 scheme produces a pres-
sure that is first order accurate in time, as noted by previous
investigators. However the standard P2 scheme is shown to
give a second order accurate in time pressure. It is shown
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that the first order behaviour observed by previous investi-
gators for P2 schemes was an artifact of the means of testing
the accuracy. Finally it is shown that second order pressure
is obtained with the P1 method by using a corrected full
pressure.
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1 Introduction

Fractional step methods integrate the Navier-Stokes equations in
time at each time-step by first solving the momentum equations us-
ing an approximate pressure field to yield an intermediate velocity
field that will not, in general, satisfy continuity. A Poisson equation
is then solved with the divergence of the intermediate velocity as a
source term to provide a pressure or pressure correction, which is
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then used to correct the intermediate velocity field, providing a di-
vergence free velocity. The pressure is updated and integration then
proceeds to the next time step. Details of the range of fractional
step methods developed for the Navier-Stokes equations are given
in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The P1 method sets the
pressure field to zero in the momentum equation and the Poisson
equation is then solved for the new pressure, while the P2 method
sets the pressure in the momentum equation to that obtained at
the previous time-step, and the Poisson equation is then solved for
a pressure correction. Both the P1 method, with appropriate in-
termediate velocity boundary conditions, and the P2 method pro-
vide second order in time accuracy for the velocity field, provided
the momentum equation is integrated using a second order accu-
rate scheme. However a number of investigations have shown the
pressure to be only first order accurate in time, irrespective of the
accuracy of the velocity [6, 7, 13]. Typically the time accuracy is
examined by obtaining the difference between a series of test solu-
tions with varying time-steps and a benchmark solution obtained
with a very small time-step, integrated to the same time.

In this paper the time-accuracy of the pressure is examined in
detail. It is shown that the first-order accuracy obtained with the
P1 scheme is an inherent feature of the scheme, however the appar-
ent first order accuracy of the pressure obtained with the P2 scheme
is an artifact of the means by which the accuracy has been tested,
and the P2 scheme does provide second-order in time accuracy in
both the velocity and pressure fields.
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2 Numerical Method

The Navier-Stokes equations in unsteady incompressible non-dimensional
form are,

ut + (u · ∇)u = −∇P +
1

Re
∇2u , (1)

∇ · u = 0 , (2)

where u is the velocity, P the pressure and Re the Reynolds number.
The continuous equations are discretised using Adams-Bashforth
for the advective terms and Crank-Nicolson for the diffusive terms,
giving the system

vn+1 − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
= −Gp +

1

2Re
L(vn+1 + vn) , (3)

Dvn+1 = 0 , (4)

where (v, p) are the discrete velocity and pressure respectively, H is
the discrete advection operator, G the discrete gradient, L the dis-
crete Laplace operator and D the discrete divergence. The time
derivative has been discretised using a centred approximation, and
thus is second order accurate at the time location n + 1/2 . The
advection terms have been discretised using an explicit Adams-
Bashforth approximation as,

H(vn+1/2) ∼ 3

2
H(vn)− 1

2
H(vn−1) + O(∆t2) ,

also giving second order time accuracy at the time location n +
1/2 . The symbol ∼ is used here and below to indicate that higher
order terms in ∆t have been dropped. The viscous terms have been
discretised using Crank-Nicolson, with again second order in time
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accuracy at time location n+1/2 . Equation (3) is therefore a second
order in time representation of equation (1) at the n + 1/2 time
location.

Fractional-step methods integrate equations (3) and (4) in a seg-
regated manner, that is the momentum equations are first solved for
the velocity, and some form of Poisson equation is then solved for
the pressure. The Poisson equation is constructed from the momen-
tum equation and the continuity equation and, as well as providing
the pressure, acts to enforce continuity.

2.1 Iterative method.

In this method equation (3) is solved, using the best current value
for p, to obtain v∗, an approximation to vn+1, that is

v∗ − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
= −Gp +

1

2Re
L(v∗ + vn) . (5)

This approximate velocity will not initially satisfy continuity. A
correction is then applied of the form,

vn+1 = v∗ −∆tGπ , (6)

where π is a pressure correction, such that the resulting vn+1 does
satisfy continuity. An equation for π is constructed by substituting
equation (6) into the continuity equation (4), to give,

Lπ = Dv∗/∆t .

Once π is obtained, the velocity is corrected and the pressure is
updated using the pressure correction as,

pnew = p + π , (7)
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where pnew is the updated pressure. Equation (5) is then solved
again using the updated pressure to obtain a new estimate of the
velocity at the n+1 time level, and that velocity again corrected to
enforce continuity and provide a pressure correction. This process
is repeated until the integral over the domain of the absolute di-
vergence after the solution of equation (5) is less than a predefined
value. The solution is then said to be converged and the integration
continues to the next time step. For the first iteration at each time-
step p is set equal to the stored pressure obtained from the previous
time-step.

In practice the scheme is most efficient if it is not required that
the pressure correction step results in a velocity field that satisfies
the divergence free condition at each iteration, rather it is only
required that the divergence error be reduced, and over a number of
momentum/pressure correction iterations the velocity will approach
and satisfy the divergence free condition.

Pressure Accuracy The pressure obtained with the iterative
method satisfies the discrete Poisson equation obtained by taking
the discrete divergence of equation (5), that is,

Lp = −D

[
3

2
H(vn)− 1

2
H(vn−1)

]
, (8)

where the time derivative and viscous terms have been dropped
using D(v) = 0 . The right hand side of this equation is a second
order extrapolation of the divergence of advection from time levels n
and n − 1 to n + 1/2 . Given that the velocity v is second order
accurate in time at time levels n and n− 1 , the right hand side of
this equation may be represented as,

D

[
3

2
H(vn)− 1

2
H(vn−1)

]
∼ D

[
H(vn+1/2)

]
+ O(∆t2)
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and hence the right hand side of the pressure equation is second
order accurate in time at time location n+1/2 , indicating that the
pressure is second order accurate in time at time level n + 1/2 , and
should be denoted pn+1/2 .

Previous investigations have examined the pressure accuracy by
obtaining a small time step solution which is used as an approxima-
tion of the exact solution. The pressure obtained at larger time steps
is then compared to the exact solution to determine the order of ac-
curacy of the scheme. The problem with this approach is as follows.
Suppose the small time step solution is obtained with ∆tf = 0.01
integrated for Nf = 100 timesteps to tNf = 1 , and the test solu-
tion is obtained with ∆tt = 0.1 integrated for Nt = 10 time steps
to tNt = 1 . The final pressure solution is second order accurate in
time at Nt∆tt−∆tt/2 on the test time-step, and at Nf∆tf −∆tf/2
on the fine time-step, however there is always a ∆tt/2−∆tf/2 dif-
ference between these two time locations, which will introduce an
order ∆tt error when the pressures are compared.

To verify the second-order in time pressure accuracy the number
of time-steps used for the fine and test solutions should be chosen so
that (Nt∆tt−∆tt/2) = (Nf∆tf−∆tf/2) . Alternatively the n+1/2
and n − 1/2 pressure solutions can be extrapolated using a second
order scheme to give an n + 1 time level pressure, which can then
be tested for accuracy in the standard way. In this paper the latter
of these approaches is used, with the pressure extrapolation,

pn+1 =
3

2
pn+1/2 − 1

2
pn−1/2 , (9)

where the pn+1/2 and pn−1/2 pressures are those obtained directly
from the solution procedure. This is a second order extrapolation
of pressure from time levels n + 1/2 and n − 1/2 to n + 1 and,
given that the pressure is second order accurate in time at n + 1/2
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and n−1/2 , will give a second order accurate approximation to the
pressure at n + 1 .

2.2 P2 Non-iterative method

The P2 non-iterative method is identical to the iterative method,
but with only a single iteration carried out at each time step. The
discrete momentum equation is solved to obtain v∗,that is

v∗ − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
= −Gpn−1/2 +

1

2Re
L(v∗ + vn) ,

(10)
where the n−1/2 time-level pressure is that obtained at the previous
time-step. The v∗ field is then corrected to satisfy continuity and
the pressure corrected in exactly the same way as in the iterative
method. As the pressure correction equation is only solved once
each time step with the non-iterative approach, it is necessary to
obtain an accurate solution of the Poisson equation.

Pressure accuracy To derive the Poisson equation satisfied by
the pressure obtained with the non-iterative scheme it is necessary
to substitute the intermediate velocity in the form given in equa-
tion (6) into the momentum equation (10), in terms of the pressure
correction π and the n + 1 level velocity, giving,

vn+1 − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
= −G(pn−1/2 + π) +

∆t

2Re
LGπ +

1

2Re
L(vn+1 + vn) . (11)
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Setting pn+1/2 = pn−1/2 +π , and taking the divergence of this equa-
tion, gives,

Lpn+1/2 = −D

[
3

2
H(vn)− 1

2
H(vn−1) +

∆t

2Re
LGπ

]
. (12)

The first two components of the source term on the right hand side
of this equation are the same as those obtained with the iterative
method, above, and again represent a second order accurate in time
approximation for the divergence of the advection at n + 1/2 . The
third term is an error associated with the pressure approximation
of the non-iterative scheme, but as the pressure correction, π, is
first order in time, this term is also second order in time. The pres-
sure obtained using the standard non-iterative pressure correction
scheme is therefore second order accurate in time at n + 1/2 , as
for the iterative scheme. Once again to obtain a second order ac-
curate pn+1 it is necessary to use the extrapolation given above in
equation (9). Additionally since the operators G and L commute in
the interior of the domain a more accurate pressure may be obtained
by setting

pn+1/2 = pn−1/2 + π − ∆t

2Re
Lπ , (13)

which is also second order in time and is denoted the full pressure.

2.3 P1 Non-Iterative method

In this method equation (5) without the pressure gradient term is
solved to obtain v∗, that is

v∗ − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
=

1

2Re
L(v∗ + vn) . (14)
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Again this approximate velocity field will not in general satisfy con-
tinuity and a correction is applied of the form,

vn+1 = v∗ −∆tGφ , (15)

such that the resulting vn+1 does satisfy continuity. An equation
for φ is constructed by substituting equation (16) into equation (4),
to give,

Lφ = Dv∗/∆t . (16)

Once φ is obtained, the velocity is corrected and the integration
continues to the next time step. At each time step φ is initialised
using the previous timestep value. This significantly reduces the
run time, by up to a factor of two, when compared to the run time
for φ initialised to zero at each time-step.

Pressure Accuracy Substituting the intermediate velocity in the
form given in equation (16) into the momentum equation (15) for
the P1 method gives,

vn+1 − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
= −Gφ +

∆t

2Re
LGφ +

1

2Re
L(vn+1 + vn) . (17)

Setting pn+1/2 = φ , as is the normal practise with P1 methods, and
taking the divergence of this equation, gives,

Lpn+1/2 = −D

[
3

2
H(vn)− 1

2
H(vn−1) +

∆t

2Re
LGφ

]
. (18)

The first two components of the right hand side of this equation are
again a second order accurate approximation for the divergence of
the advection. However the last term is now first order in time, and
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thus the pressure obtained with the standard approximation used
in the P1 scheme will be first order. It is once again clear that a
more accurate pressure can be obtained by setting

pn+1/2 = φ− ∆t

2Re
Lφ . (19)

which will again be denoted the full pressure. This pressure will
satisfy the Poisson equation,

Lpn+1/2 = −D(
3

2
H(vn)− 1

2
H(vn−1)) , (20)

indicating that for the P1 scheme the full pressure is second order
in time. Thus it is expected that using the full pressure for the
P1 scheme will provide a significantly more accurate pressure field
than the standard pressure approximation.

2.4 Boundary Conditions and Discretisation

The above schemes are defined on the standard mac staggered grid
using finite volumes. Results are presented below for natural convec-
tion flow in a square cavity which requires fixed velocity boundary
conditions. The normal component of velocity, which has a node
on the boundary, is set to the required value at that boundary,
while the tangential component, which does not have a node on the
boundary, has the average of the values at the immediate interior
and exterior nodes set to the required value. Because the normal
component of velocity is known at the boundary no correction is
required to the ∗ field there, and therefore the normal gradient of π
and φ is set to zero at the boundary. No explicit boundary con-
ditions are required for the pressure. For the iterative solver the
boundary conditions for the ∗ velocity field are set to be the same
as the physical boundary conditions, given above.
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The P1 non-iterative solver requires a modified boundary con-
dition for the ∗ tangential velocity field as follows,

U∗
1 = −U∗

2 +
2∆t

h
∆p

n−1/2
1 , (21)

where U∗ is the tangential velocity, subscript 1 is the immediate
domain exterior point, subscript 2 is the immediate domain inte-
rior point, h is the grid size and ∆p is the x difference of pres-
sure. Physical velocity boundary conditions are applied to the in-
termediate normal boundary velocity. This boundary condition is
similar to that developed by Kim and Moin [3] and is necessary
to ensure second-order in time accuracy for the velocity for the
P1 method [13]. The P2 method has second-order in time accuracy
with the physical boundary conditions applied to the intermediate
velocity field, however an improvement in accuracy is obtained using
the Kim and Moin boundary condition given above, but with πn−1/2

rather than pn−1/2 . Results will be obtained for both the standard
boundary conditions and the Kim and Moin boundary conditions
for the P2 method.

The equations are discretised using standard second-order cen-
tral differences for the viscous terms, the pressure gradient and di-
vergence terms. The quick third-order upwind scheme is used to
obtained face values for use in the advective terms [14]. The mo-
mentum equations are inverted using an adi scheme in which terms
are shifted to the right hand side of the system to enable a series
of tridiagonal matrices to be inverted in each direction. The terms
shifted to the right hand side contain the latest available estimate
for the unknown, allowing the domain to be repeatedly swept until
an accurate solution is obtained. For all the methods tested four
sweeps of the adi solver were used, where a single sweep consists
of solving the series of tridiagonal systems associated with each co-
ordinate direction once. Four sweeps of the solver gave solutions
with residuals of less than 10−8 for all cases. A preconditioned
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restarted gmres method is used to solve the Poisson φ and pres-
sure correction equations for all the methods. Other solvers, such as
preconditioned conjugate gradient, incomplete lu, adi and Jacobi
have also been tested and found not to affect the overall accuracy
or relative performance of the methods. Of the solvers tested gm-
res was found to be the most efficient. The number of sweeps of
the gmres solver used varied with each of the methods tested and
with the time-step and convergence criterion prescribed. For the
non-iterative schemes for the smallest convergence criterion up to
a hundred sweeps were required while for the largest convergence
criterion as few as five were sufficient. For the iterative scheme the
Poisson solver was limited to five sweeps. At each time step the
solution was considered converged when the integral of the absolute
divergence over the domain was less than a preset value. The con-
vergence is applied to the iterative scheme after the solution of the
momentum equations, with a minimum of two momentum/Poisson
pressure correction iterations required.

3 Results

The results presented below for natural convection flow in a square
cavity were obtained in double precision on a dec 3000-700. The
simulation of natural convection flow requires the solution of a tem-
perature equation in addition to the momentum and Poisson pres-
sure correction equations described above, and the governing equa-
tions then become,

Tt + (u · ∇)T =
1

Ra1/2
∇2T , (22)

ut + (u · ∇)u = −∇P +
Pr

Ra1/2
∇2u + bPrT , (23)

∇ · u = 0 , (24)
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where T is the temperature and b represents the gravity force in
the buoyancy term, with b = 1 for the vertical component of ve-
locity and b = 0 for the horizontal component of velocity. The
control parameters for this flow are the Rayleigh number Ra and
the Prandtl number Pr. The Rayleigh number Ra = gα∆TH3/νκ ,
with g gravity, α the coefficient of thermal expansion, H the height
of the cavity, ν the kinematic viscosity and the diffusivity κ = ν/Pr .
The results presented below were obtained with Ra = 6 × 105

and Pr = 7.5 . Distance has been non-dimensionalised using H
and time using H2/(κRa1/2) , which is the boundary layer start-up
time.

The temperature equation is discretised using the same approach
as that used for the momentum equations, and is solved at each
time step prior to the solution of the momentum/pressure correc-
tion equations. This allows the temperature in the buoyancy term
to be located at the centered n+1/2 time location. As the temper-
ature depends only on the n and n− 1 level velocities the solution
of the temperature equation is uncoupled from the solution of the
momentum/Poisson pressure and pressure correction equations for
the n+1 level velocities and the pressure. The accuracy analysis de-
veloped in the previous section for the momentum/Poisson pressure
and pressure correction equation will therefore also apply in this
case, with the only influence of temperature being the additional
second order error associated with the buoyancy term.

Initially the fluid in the square cavity is stationary and isother-
mal at temperature T = 0 . At time t = 0 the left and right walls
are instantaneously heated and cooled to ∆T/2 and −∆T/2 re-
spectively, with the top and bottom boundaries having zero normal
temperature gradient. All boundaries are no-slip. The results pre-
sented below were obtained with Ra = 6× 105 and Pr = 7.5 .

A 50×50 uniform mesh has been used. The 50×50 solution was
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compared to that obtained on a 200 × 200 mesh and the variation
was found to be less than one percent. The 50× 50 mesh is there-
fore considered to provide a sufficiently accurate resolution for this
flow. To test the behaviour of the methods the flow was integrated
from t = 0 to t = 2 for time-steps in the range ∆t = 0.003125 to 0.1 ,
and the ‘error’ expressed as the L2 norm of the difference between
a test solution obtained at a given ∆t and a benchmark solution
obtained with a time step of ∆t = 7.8125 × 10−4 , also integrated
from t = 0 to t = 2 . Total time to steady state for the cavity is
orders of magnitude greater than the boundary layer start up time.
The maximum time step selected, ∆t = 0.1 , was chosen to be near
to the empirically obtained stability limit of ∆t = 0.2 .

For each of the methods and time steps results have been ob-
tained with convergence criterion ranging from 10−4 to 10−11 in
order-of-magnitude steps. The solution was considered converged
at each time step when the integral over the domain of the absolute
residual of the continuity equation was less than the convergence
criterion. In this way it was possible to determine which was the
appropriate convergence criterion for each method and time step to
ensure that as accurate as possible a solution was obtained. The
results presented are those for which a further reduction of the con-
vergence criterion by an order of magnitude led to a less than one
percent change in the solution accuracy. This degree of accuracy was
obtained with different criteria for each method and each time step,
ranging from 10−4 for the standard P1 method at time step ∆t = 0.1
to 10−9 for the iterative method at time step ∆t = 0.003125 . For
brevity only the pressure results are presented below, velocity and
temperature results may be found in Armfield and Street, [13], and
a complete description of the development of this flow in Patterson
and Armfield [15], and Armfield and Patterson [16].

Figure 1(a) displays the pressure error plotted against time-step
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Figure 1: (a) Pressure accuracy obtained using n + 1/2 test solu-
tion. (b) Pressure accuracy with pressure extrapolated to n+1 time
location as test solution

size ∆t for each of the basic methods for the n + 1/2 time loca-
tion pressure. All of the schemes are showing first order in time
behaviour. Shifting to the full pressure for the P1 method, and
full pressure and/or Kim and Moin boundary conditions for the
P2 method does not affect the first order behaviour or significantly
improve the accuracy [13].

Figure 1(b) contains the results obtained when the pressure is
extrapolated to the n + 1 time location. Both the iterative and
P2 methods now give second-order in time accuracy. Using the full
pressure and Kim and Moin boundary conditions for the P2 method
is now seen to increase the accuracy of the pressure to give approx-
imately the same accuracy as the iterative scheme. The standard
P1 method still gives only first-order accuracy as a result of the first
order term on the right hand side of equation (19). When this term
is included in the pressure the resultant full pressure, extrapolated
to the n + 1 location, is second-order accurate in time.
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Considering only the extrapolated n+1 results the full pressure
P1 method is the least accurate of the second order results, while the
extrapolated iterative method is the most accurate. The standard
P2 and full pressure P2 results lie between the P1 and iterative
results, while the full pressure P2 results with the Kim and Moin
boundary conditions provide equivalent accuracy to the iterative
scheme.

Figure 2 contains a comparison of the efficiency of each of the
second order results. It is seen that the comparative accuracy of
the methods does not necessarily predict the comparative efficiency
of the schemes. The most efficient is the P2 method with Kim
and Moin boundary conditions and full pressure. The least efficient
overall is the P1 method. The iterative scheme is also relatively inef-
ficient for large errors, while for small errors it is approximately the
same as that of the P2 method with standard boundary conditions.

4 Conclusions

Iterative and non-iterative P2 fractional step solvers of the type
described above produce a pressure which is second-order accurate
in time. Previous investigations, which have found the pressure to
be first order accurate, did so because the pressure accuracy was
assumed to be located at the n+1 location, whereas the pressure is
correctly located at the n + 1/2 time level. Using an extrapolated
n + 1 pressure the second-order in time accuracy of the pressure
field is evident. This does not mean that such an extrapolation
is necessary to produce second-order in time accuracy, it is only
required to demonstrate it at the n + 1 location. The pressure at
the n + 1/2 location is therefore second-order in time.

The P1 method provides only first-order in time accuracy for
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Figure 2: Efficiency of second order results.

the pressure field with the standard pressure approximation. For
this method it is necessary to include the final term on the right
hand side of equation (19) into the pressure to obtain second order
accuracy.

The P2 method with Kim and Moin boundary conditions using
the full pressure was found to be the most efficient of the schemes
tested. This is consistent with the results presented in Armfield
and Street [13], where comparative efficiencies for these schemes
were examined for the velocity and temperature fields.
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