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Can trained monkeys design flight
controllers for hypersonic vehicles?

K. J. Austin∗ P. A. Jacobs†

(Received 5 October 2001; revised 3 October 2002)

Abstract

The supersonic combustion ramjet is an as yet unproven
propulsion system for hypersonic flight. Provided it can
be developed into a practical vehicle, the ultimate success
of sustained hypersonic flight will depend on configuring a
robust and stable airframe-propulsion-control combination.
To design the longitudinal flight controller for this inher-
ently unstable vehicle we have applied a genetic algorithm,
hence the trained monkeys metaphor in the title. Being a
nondeterministic search method, there is no guarantee of
generating a useful solution, yet given a little direction and
enough time it is able to solve hard problems. The controller
is built using fuzzy logic rules, directed at manipulating the
vehicle’s angle of attack through the actuation of symmetric
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elevators. A preset structure for the rules is used whereby
the design task is to configure the control surface through
selection of the rule consequents. To direct the search for a
controller design, the genetic algorithm uses simulated flight
responses to a range of initial conditions, without lineariza-
tion of the vehicle model and dynamics. Results for the
genetic algorithm designed controller show longitudinal sta-
bility and disturbance rejection.
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1 Introduction

The supersonic combustion ramjet, or scramjet, is expected to ex-
tend the flight envelope of air-breathing engines and provide an
alternative to rocket propulsion. Current high performance air-
breathing engines such as turbojets and ramjets, are limited by the
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thermal and structural loads that result from slowing the freestream
air to subsonic conditions within the engine flowpath. Scramjets, by
virtue of maintaining supersonic flow throughout, have the poten-
tial to provide broad access to the hypersonic regime [12]. Presently
this hypersonic regime, where the Mach number is greater than 5,
is only accessible by rockets [2]. Compared to rockets, scramjets
benefit by capturing the oxygen from the atmosphere rather than
having to carry it on board. The superior cycle efficiency that re-
sults means scramjets appear capable of a high specific impulse at
high speeds and have a capacity to accelerate more mass than a
rocket of the same size. The weight saving of not having to carry
oxidant can be directed towards augmenting vehicle ruggedness and
flexibility of use.

The beginning of scramjet research is marked by the 1950’s ex-
periments on combustion in supersonic airstreams [5]. Yet, despite
the continuous research effort, it remains to be seen whether the
scramjet can be developed into a practical propulsion system. As-
suming practical scramjet operation is possible, the ultimate success
of sustained hypersonic air-breathing flight will depend on config-
uring a robust and stable airframe-propulsion-control combination.
Due to the extreme environmental conditions and the sensitivity of
the engine to untrimmed flight, stringent attitude control and tra-
jectory maintenance will be required. Maintenance of the vehicle
attitude is therefore a requirement of vehicle stability and propul-
sive effectiveness.

With actual flight of a scramjet powered vehicle yet to be achieved,
the development of control approaches has been through ground
based experimental facilities and computational simulation. The
most advanced program is nasa’s Hyper-X vehicle [6], a scaled down
space-plane concept. A recent flight test of Hyper-X prematurely
ended with the spectacular failure of the booster elevators [18]. If
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it were not for the elevator failure, we would have seen the most
advanced test of a scramjet vehicle, and in particular, the control
approach. Hypersonic flight control for Hyper-X, or X-43 as it is
also known, is realized by processing guidance commands and sensor
feedback signals to produce aerodynamic surface commands. The
control laws were designed using classical linear control design tech-
niques, covering the 7 seconds of expected scramjet operation and
the controlled descent. The longitudinal control law uses angle-of-
attack error and pitch rate to derive a symmetric command for the
all-moving wing. Feedback gains are scheduled with angle of attack
and Mach number, and the surface command is further compensated
for changes in dynamic pressure.

The same basic configuration of a feedback loop for longitudi-
nal control is used here, but the controller transfer functions are
provided by a set of fuzzy rule bases. Fuzzy logic control (flc)
was chosen for its promise of providing robust control of uncer-
tain systems. Outer loop guidance rules provide a target attitude
for trajectory maintenance, while inner loop rules based on angle-
of-attack provide stability augmentation while controlling attitude.
Whilst it is possible to encode a robust control law within the flc
structure, the realization of such a controller is dependent on the
measure of control performance and the design procedure. In this
case the objective function used to design the controller is a set
of flight simulations. Given a test vector of controller parameters,
the objective function returns a performance measure based on the
nonlinear flight response to a set of initial conditions. Exposing the
controller to a wide range of flight conditions and vehicle arrange-
ments is necessary to achieve full coverage of the input space and
should satisfy the disturbance rejection required of an uncertain sys-
tem.

The question of the capability of trained monkeys, as posed by
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the title of this paper, refers to the numerical optimization proce-
dure used to configure the controller. Using a genetic algorithm as
the optimization tool provides a black box-type design, analogous
to the concept of trained monkeys working in parallel, and similar
to the early human parallel computers [9]. In genetic algorithms the
power of natural evolution is exploited. A population of individu-
als, which in some form are encoded with the control parameters,
undergoes simulated evolution. The purpose of the evolution is
the improvement of controller performance as defined by the objec-
tive function.

In the following sections the vehicle model is introduced and the
control structure and design procedure is defined. Results show the
evolution of the controller and simulated flight responses.

2 Hypersonic Vehicle Model

The vehicle concept used in this study is based on the axisymmetric
configuration investigated at The University of Queensland [11]. It
was originally proposed for a small payload vehicle concept, with
the scramjet providing propulsion for the second stage of a three
stage launcher [17]. Amongst the studies on flight characteristics,
the axisymmetric vehicle is referred to as a winged cone model [15].
The principal design features are derived from decades of scramjet
research at nasa. These include round combustors, swept com-
pression surfaces, and a circumferential distribution of the engine
modules around the vehicle axis of symmetry. In its generic form
the axisymmetric vehicle maximizes the airflow capture area relative
to the airframe area, promoting an adequate thrust margin while
minimizing configuration drag at near-zero angle of attack.

In our study the vehicle model is in-line with the flight simulation
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software, thereby avoiding the reduction of flight and control charac-
teristics to a collection of linear models. For each integration time
step, a complete aero-propulsive simulation is performed. Three
dimensional simulation is computationally expensive so a simplifi-
cation of the axisymmetric configuration, compatible with a longi-
tudinal flight simulation, is used. Shown in Figure 1, the vehicle has
a box section, thus providing two-dimensional flow paths through
the propulsion system and over the airframe. The basic shape of the
vehicle and engine are otherwise maintained and, importantly, the
operational dependencies on attitude and flight conditions remain.

Since a fixed geometry inlet is used, a nominal operating condi-
tion at the high Mach number end of the trajectory sets the engine
geometry and the overall airframe dimensions [19]. Accordingly, the
engine design condition is set at a Mach number of 15, an altitude
of 30 km, and zero angle of attack flight. The high dynamic pressure
which this equates to means engine performance is given preference
over the potential vehicle structural capabilities. Roughly 8.25m
in length, the vehicle has a dry mass of 2500 kg. For small vehi-
cles such as this one, hydrocarbon fuels such as ethane are preferred
over hydrogen, as they offer a higher energy density, simpler storage
needs, and reasonable specific impulse values [16]. In the configu-
ration shown in Figure 1, 2485 kg of fuel can be stored, offering
approximately four minutes of scramjet operation.

The nominal flight trajectory is a constant dynamic pressure ex-
trapolation of the design flight condition. This provides a mapping
of velocity versus altitude, using a standard atmosphere model [1].
Because this trajectory equates to near-level flight, the vehicle uti-
lizes a lifting wing with a diamond profile. The centreline of the
wing is set at an angle of incidence of 3◦ with respect to the vehi-
cle centreline. Open-loop stability of such a configuration requires
prohibitively large aerodynamic surfaces, so closed-loop stability is
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Figure 1: Baseline design for the scramjet powered stage of a small
launch vehicle concept, featuring two-dimensional flow paths. The
sectional view of the engine shows a possible arrangement of the
payload and fuel, and the flow features for one of the engine flow
paths.
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provided by an all-moving rear wing arrangement. There is also
a significantly smaller contribution from the relative distribution of
the freestream air between the modules. Differential throttling with
fixed fuel input, provides passive stability augmentation. Active
throttling of the engines is also possible for control augmentation,
but it is not used here because it lessens the acceleration capability
of the vehicle. To counter the large moments generated by the intake
surfaces, the rear wing provides relatively large actuation surfaces.
For the results shown in this paper an actuation rate limit of 2 rad/s
is used.

Numerical simulation of the aero-propulsive features includes
those associated with internal engine flow and external flow over
the wings and control surfaces. Referring to Figure 1, the inlet
wedge splits the freestream flow, directing the air into two engine
modules. This is done through the action of a pair of oblique shock
waves. Following mixing and combustion of the fuel with the su-
personic airstream, the products are expanded by the nozzle. Net
thrust is available as the difference between the thrust generated by
expansion of exhaust gases, and the total drag on the engine and
airframe. Instantaneous forces and moments are computed using a
combination of one and two-dimensional flow models. It is recog-
nized that many of the real flow features crucial to engine operation
are neglected when using these simplified models. However, the ba-
sic longitudinal features are dictated by the inlet processing, which
despite ignoring viscous effects, is reasonably captured.

The controlled flight study has been limited to the longitudinal
characteristics. The restricted dynamics are formed by constraining
the general six degree-of-freedom flight equations for a rigid body
aircraft in flight relative to a spherical, rotating Earth [7]. More
detail on the aero-propulsive modeling and simulation package is
available in [3].



3 Control Structure and Design C48

Guidance

Step
generator

Vehicle
dynamics

and
actuator

u = θec

-

xerr = ( , , )α θ θe

.

x

Longitudinal
FLC

xref

.

+
Traj.:  h=f(q ,V)∞

Figure 2: Closed-loop attitude and trajectory control model for
longitudinal flight. The guidance trajectory block uses the vehicle
flight speed V and a preset flight dynamic pressure q∞, to set a de-
sired altitude, which is transformed into a reference vehicle state xref.

3 Control Structure and Design

The two primary tasks of the controller are to maintain vehicle sta-
bility and follow a constant dynamic pressure trajectory. While
zero angle of attack is desired from the point of view of vehicle
acceleration, non-zero angle of attack is needed to correct trajec-
tory deviations or eliminate environmental disturbances. However,
with large moments generated at relatively small angles of attack,
it is not possible for the vehicle to make rapid or large angle of
attack manoeuvres.

A conventional structure for longitudinal control is used, as
shown in Figure 2. The flight control function is established by
processing outer loop guidance commands to generate a target at-
titude for trajectory hold. An inner loop attitude control law based
on angle-of-attack (aoa) maintains stability while tracking the at-
titude command. Results for the inner loop alone are presented in
this paper.
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Figure 3: Longitudinal fuzzy logic controller structure: (a) show-
ing the kth rule and (b) a typical interpretation of a fuzzy input vari-
able.

The longitudinal control law expresses a functional relationship
between a subset of the vehicle state (αerr, θ̇, θe), representing angle-
of-attack error, pitch rate, and elevator angle respectively, and the
actuation command θ̇ec, or elevator rate.

The transformation from the vehicle state to the control com-
mand is performed by fuzzy if-then rules as illustrated in Figure 3.
Controller design is configured as a numerical optimization problem,
to which a real-coded genetic algorithm is applied.
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3.1 Fuzzy Logic controller

Fuzzy logic is the logic of human perception. Due to its power in
interpreting human operation, fuzzy control has become a major
application area, particularly for process control and tasks where
traditional automatic control strategies are out-performed by hu-
man operators. In the hypersonic control problem we are exploiting
other features of fuzzy control. Primarily these are a convenient
structure for describing a complex and nonlinear control surface,
and the promise of robustness against system uncertainty.

The basic operation of the controller can be drawn in three
stages: input interpretation, parallel rule evaluation, and output
generation. Input interpretation is simply the partitioning of the
input space. Each input variable is partitioned across its domain
space with fuzzy sets, as shown in Figure 3(b), where nl, nm, and
ze refer to negative large, negative medium, and zero respectively.
The condition statement, if α is nl, assesses to what degree µ(x),
is α satisfied by the description nl. Triangular fuzzy sets were used
to partition the input variables, according to the following member-
ship function.

µ(x) =

{
1− |x−a|

b
, if |x− a|≤b,

0 , otherwise.
(1)

Symmetric partitions with 50% overlap forced nonlinear control
elements to be formed by the consequent values rather than the
predefined fuzzy sets. All fuzzy variables are defined within the
range [−1, 1] forming a base set to which the input variables are
scaled. The input gains K may then be interpreted as the inverse
of the maximum expected or allowed value of the variable.

Each control rule relates a conditional statement, nominally in-
volving all control inputs, and a consequent statement which sets
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the control output. A simplified fuzzy inference method is used,
where a scalar is used in place of a fuzzy set in the consequence of
each rule. Application of the inference mechanism begins with the
firing of each of the rules. In Figure 3, Ak,i defines the membership
function of the ith input of the kth rule. The firing strength βk of the
kth rule, assuming all conditional statements are treated equally, is

βk =
n∏

i=1

µAk,i
(x′i) . (2)

A weighted average, based on the firing strength, then provides the
control output

u = θ̇ec = Kθ̇e

∑r
k=1βk · yk∑r

k=1βk

. (3)

The design approach for fuzzy control is generally dictated by
the problem information available. For example, rules can be as-
sembled using operator knowledge, physical constraints, desirable
operating characteristics, or other heuristic information. Such in-
formation may establish the scaling of input and output parameters,
the structure of the rules, or the consequent setting for each rule. An
alternative approach is to use a design metric such as the system re-
sponse to a given task, and through a numerical iterative approach,
design some or all of the features of the controller. Here, the design
of the controller has been configured as a numerical optimization
problem. The rule base structure is preset, as is the partitioning of
the input variables. Variable scaling is set using expected or allowed
response amplitudes, leaving to the design task, the specification of
rule consequents yk.
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3.2 Genetic Algorithm

As a design scheme, the genetic algorithm benefits from problem
independence, allowing a black box design approach, and a search
process which scales well with problem size. Both of these features
are desirable for control design, especially where there is little un-
derstanding of the system behavior, a potentially large number of
rules to configure, and a complex system model.

A genetic algorithm is a general search procedure, belonging to
a larger set of evolutionary algorithms which simulate the process of
natural evolution. The simple structure shown in Figure 4 has been
used for this study. A randomly sourced population of individuals
undergoes an evolutionary process of reproduction through selection
for mating according to fitness, and recombination via crossover
with mutation.

To use as a numerical optimization tool, it is necessary to have
a method of encoding the problem as an artificial chromosome and
a means of discriminating between good and bad solutions. Each
individual in the population is a possible control configuration, en-
coded as an array of floating point values. We configure our genetic
algorithm using real-coding rather than a binary alphabet, for the
benefits it offers in reliability and search velocity on numerical op-
timization tasks [8, 13].

The problem definition provides an evaluation measure, referred
to as the objective function, which in this case is extracted from
a collection of flight simulations. When scaled using linear scaling
with sigma truncation, the objective function becomes the fitness
measure used to direct the search.

Stochastic remainder selection without replacement is used to
select parents for mating, with complete replacement of the popula-
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begin
t = 0
initialize population (random)
evaluate population
while (t < T ) do

t = t + 1
select parents for reproduction, biasing the fittest
recombine individuals via crossover with mutation
evaluate new population

end
end

Figure 4: The basic genetic algorithm structure.

tion for each generation. This simply amounts to allowing multiple
copies of parents with greater than average fitness in the mating
array, and randomly selecting parents from that array for reproduc-
tion. New individuals are created by sharing parent information
through crossover, and introducing new information through muta-
tion. Arithmetic crossover [14] at a fixed probability pc is used with
the mixing parameter randomly generated each time recombination
occurs. It is applied uniformly to the parent chromosomes. Each
gene in the children’s chromosome also undergoes mutation with
probability pm.

Arithmetic crossover generates offspring by blending the infor-
mation from the parents. The non-uniform mutation operator pro-
posed by Michalewicz and Janikow has been modified to avoid bi-
asing the mutation to the centre of the search range. We refer to
the modified operator as an adaptive range mutation. In this op-
eration a nominally symmetric mutation range is established about
the original value, with mutation yielding a value within that range.



4 Simulation Results C54

The range is non-uniform across generations meaning the possibil-
ity of large mutations reduces with each generation. Details of the
algorithm and its operators are given in [4].

4 Simulation Results

To provide stability augmentation for the accelerating scramjet ve-
hicle, an angle of attack (aoa) control function is used. The control
design task is the optimization of the rule based controller across
the hypersonic trajectory, for possible aoa trim commands of ±3◦.
A predefined rule base structure was used with control inputs α,
θ̇, and θe, and a control output command θ̇e. Input and output
variable scaling was preset to appropriate values, according to the
maximum disturbance considered. In the example presented, the
control function was represented by 27 fuzzy rules, and evolved over
500 generations using a population of 30 individuals. Genetic oper-
ators were applied with probabilities pc = 0.6 and pm = 0.2 .

Controller performance was assessed by applying a collection of
closed-loop performance measures to a set of simulated flight re-
sponses. For the results presented here a set of 42 initial condition
arrangements were generated, based about six nominal operating
points from the proposed trajectory. The five performance measures
that were used included: simulation time, average angle of attack er-
ror, (1/tf )

∫
|αerr| dt, the integral of absolute error,

∫ tf
0
|αerr| dt, and

the maximum aoa error and pitch rate recorded in the last second of
the simulation time. Each performance measure was scaled relative
to a desired response tolerance, providing a maximum bound for
each measure of 100 . The overall objective function was a weighted
sum of the individual performance measures. All but the simula-
tion time component were applied non-uniformly across the design,
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such that during the early design stages the primary selection pres-
sure was on the development of control solutions which can at least
prevent vehicle failure.

Figure 5 shows the evolution of the controller through the ob-
jective function history. The initial step-wise increase is primarily
due to the introduction of stability robustness features amongst the
population of control solutions. With the majority of test conditions
satisfying the simulation time measure, the performance measures
relating to the response characteristics lead to a rapid rise in the
quality of the solution. The transition at generation 250 is due
to the gradual reduction in the tolerance of the desired aoa re-
sponse, placing greater demands on the steady state response once
good control solutions have been established. Over the second half
of the design, controller robustness has been established and the
genetic algorithm is able to fine-tune a stable system. With only
27 rules, the generation of a stable system occurs rapidly with a few
of the rules dominating the behaviour. For larger rule sets, formed
through greater partitioning of the inputs, the rise in the objec-
tive function is more gradual, with more time required to establish
robustness features.

A sample flight response is shown in Figure 6 for the best con-
trol solution generated after 500 generations. To show the flight
response across the trajectory, every 2 seconds the reference aoa is
randomly perturbed and the flight condition moved along the nom-
inal trajectory. The controller rapidly trims to the reference con-
dition and performs robustly across the flight envelope. To initiate
a change in vehicle trim the elevator must first move in a direction
away from the final trim position. This can lead to vehicle fail-
ure for large initial trim errors, placing limits on the allowed step
commands in angle of attack and requiring representation in the
objective function through a large test set. Larger rule bases can
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Figure 6: Closed-loop response of the scramjet vehicle to angle of
attack commands.

provide greater separation between large error responses and fine-
tuning the response, and therefore provide more desirable response
characteristics.

5 Conclusions

The control design procedure presented in this paper utilizes a ge-
netic algorithm as a function optimization tool. It is a computa-
tionally demanding task despite the relatively small population and
generations used. While genetic algorithms justifiably lay claim to
finding solutions to difficult problems, as with any approach, they
are subject to the no free lunch theory [10]. Along with the time
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required to evolve the control parameters, there are inherent difficul-
ties with the black box approach. It requires careful consideration of
the representation of the objective function, including their relative
magnitudes. Undesirable features not readily apparent in the initial
specification of the objective may well be be exposed by the genetic
search. It may also be difficult to determine the source of problems
when the design fails to produce a useful controller. Possibilities
include algorithm settings, algorithm structure, the system model,
exceeding the capabilities of the vehicle through inappropriate ini-
tial conditions or disturbances, or an erroneous objective function.
The authors have experienced all of these.

For a single rule base to be applied to the entire trajectory, the
design procedure must be exposed to a large array of initial con-
ditions, inevitably compromising the local stability for broad range
stability. Improved performance is likely to be available by intro-
ducing additional control inputs which allowed scheduling across the
flight trajectory. However, there is no avoidance of the considerable
computational time necessary to design such a controller.

In the context of the metaphor in the paper title, trained mon-
keys are capable of designing a hypersonic flight controller, but they
need to be treated with care and patience.
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