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A boundary element method for steady
infiltration from periodic channels
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Abstract

The matric flux potential and horizontal and vertical flux
distributions are obtained for periodic irrigation channels
by using boundary integral equation techniques. Numerical
results are given for the special cases of semicircular and
rectangular channels and the results compared with those
of Batu [Soil Science Society of America Journal, 42:545–
549, 1978] and Warrick and Lomen [Soil Science Society of
America Journal, 40:639–643, 1976] for a flat strip. The
results show that the matric flux potential associated with
the flat strip and semicircular channel are similar; whereas
for the particular rectangular channel considered the matric
flux potential is subtantially increased in the region adjacent
to the channel.
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1 Introduction

Philip [5, 6, 7], Wooding [11], Raats [8, 9], Batu [2], Zachmann and
Thomas [12] have obtained solutions for steady infiltration from
point, line and areal sources. Also Warrick [10], Lomen and War-
rick [4] have obtained time-dependent solutions for point, line, strip
and disc sources. For steady infiltration from a ditch Batu [2] has
presented both theoretical and experimental results.

The present paper employs boundary integral equations to con-
sider steady infiltration from periodic ditch sources (see Figure 1).
Use of this method enables the matric flux potential associated with
infiltration from periodic channels to be investigated for a variety
of channel shapes which have not been considered by previous au-
thors. The results obtained for some particular cases indicates how
the method may be readily used to determine the influence of the
channel shape on the matric flux potential in regions adjacent to the
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Figure 1: Periodic strip sources

channels. The analysis is based on a linearization, as proposed by
Batu [1], of the flow equation in terms of the matric flux potential.
The solutions are of interest in connection with furrow irrigation.

2 Statement of the problem

Referred to a Cartesian frame OXY Z consider an isotropic soil
lying in the region Z > 0 with OZ vertically downwards. The
boundary of the soil lies in the plane Z = 0 except for a periodic
series of channels which have a geometry which does not vary in
the OY direction and further is such that it is symmetrical about
the plane X = 0 (see Figure 1). In this work, we investigate three
different channel shapes. Specifically, the flat strip, semicircular and
rectangular channels. The geometry of each channel is presented
in Figures 2, 3 and 4. Each of the identical channels has surface
area 2L per unit length in the OZ-direction, where L is a reference
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length. Also the distance between corresponding points on adjoining
channels is denoted by 2D, where D is a reference length. We
assume that the water table is located at infinity and each of the
channels is filled with water.

It is required to find the matric flux potential Θ(X, Z) through-
out the soil Z > 0 .

3 Fundamental equations

The relationship between the hydraulic conductivity K(h) (unit
length per unit time) of unsaturated soil and the hydraulic con-
ductivity Ks of saturated soil is taken in the exponential form (see
Batu [1])

K(h) = Ks exp(αh) , (1)

where h (unit length) is the soil water potential and α (per unit
length) is an empirical constant. The matric flux potential Θ (unit
length squared per unit time) is related to the hydraulic conductivity
by

Θ =

∫ h

−∞
K(q) dq = α−1K(h) . (2)

The linearized form of the steady infiltration equation is

∂2Θ

∂X2
+

∂2Θ

∂Z2
= α

∂Θ

∂Z
. (3)

The horizontal and vertical components of the flux, as functions of
the matric flux potential are

U = − ∂Θ

∂X
, (4)
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V = αΘ− ∂Θ

∂Z
. (5)

The flux normal to a surface with outward pointing normal n =
(n1, n2) is

F = − ∂Θ

∂X
n1 +

(
αΘ− ∂Θ

∂Z

)
n2 . (6)

Dimensionless variables are now defined in the form

θ =
1

v0L
Θ , x =

α

2
X , z =

α

2
Z ,

u =
2

v0αL
U , v =

2

v0αL
V , f =

2

v0αL
F ,

where v0 is a reference flux. In terms of these variables equations (3)
to (6) may be written in the dimensionless form

∂2θ

∂x2
+

∂2θ

∂z2
= 2

∂θ

∂z
, (7)

u = −∂θ

∂x
, (8)

v = 2θ − ∂θ

∂z
, (9)

f = −∂θ

∂x
n1 +

(
2θ − ∂θ

∂z

)
n2 . (10)

The transformation

θ = exp (z)Ψ (11)

transforms equation (7) to

∂2Ψ

∂x2
+

∂2Ψ

∂z2
−Ψ = 0 . (12)
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Also equations (8–10) transform to

u = − exp (z)
∂Ψ

∂x
, (13)

v = exp (z)

(
Ψ− ∂Ψ

∂z

)
, (14)

f = − exp (z)

[
∂Ψ

∂x
n1 −

(
Ψ− ∂Ψ

∂z

)
n2

]
= − exp (z)

[
∂Ψ

∂n
−Ψn2

]
. (15)

Hence
∂Ψ

∂n
= Ψn2 − e−zf . (16)

Due to the symmetry of the problem there will be no flow per-
pendicular to the vertical planes having abscissae X = 0,±D, . . . .
Thus the boundary value problem need only be solved in the shaded
domain shown in Figure 1 with the following boundary conditions.

The boundary condition for the soil surface outside the channels
is that of no flow across the surface. Therefore from equation (14)
the boundary condition on that part of the shaded region in Figure 1
that lies on z = 0 is

Ψ− ∂Ψ

∂z
= 0 . (17)

Over the surface of the channel the normal flow is

−
[
∂Ψ

∂x
n1 −

(
Ψ− ∂Ψ

∂z

)
n2

]
= exp(−z)f0(x, z) for (x, z) ∈ ∂Ω1,

(18)
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where ∂Ω1 denotes the boundary of the channel in the shaded part
of Figure 1 and f0(x, z) is given.

Also the condition of no flow perpendicular to the boundary
lines X = 0 and X = −D of the shaded region leads to the boundary
conditions

∂θ

∂x
= 0 for 0 ≤ z ≤ ∞ and x = 0 and x = −αD/2 . (19)

For 0 ≥ x ≥ −αD/2 and z = ∞ [1]

∂θ

∂x
= 0 and

∂θ

∂z
= 0 . (20)

Hence using (11) the corresponding conditions on Ψ are

∂Ψ

∂x
= 0 for 0 ≤ z ≤ ∞ and x = 0 and x = −αD/2 ,

(21)
and for 0 ≥ x ≥ −αD/2 and z = ∞

∂Ψ

∂x
= 0 and

∂Ψ

∂z
= −Ψ . (22)

4 Boundary integral equation

The boundary integral equation for the solution to equation (12) is

λΨ(a, b) = −
∫

∂Ω

[
∂Ψ

∂n
φ′ − ∂φ′

∂n
Ψ

]
dS , (23)

where n = (n1, n2) is the outward pointing normal to Ω (where
Ω denotes the shaded domain in Figure 1), λ = 1 if (a, b) ∈ Ω
and λ = 1/2 if (a, b) ∈ ∂Ω (the boundary of Ω) and ∂Ω has a
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continuously turning tangent. In the case of equation (12) the φ′ in
equation (23) is

φ′(x, z) = − 1

2π
K

(1)
0 (r) . (24)

where r = ((x − a)2 + (z − b)2)1/2 and K
(1)
0 is a modified Bessel

function.

Substitution of (16) into (23) gives

λΨ(a, b) = −
∫

∂Ω

[
φ′n2 −

∂φ′

∂n

]
Ψ dS +

∫
∂Ω

fe−zφ′ dS . (25)

If the flux is zero across large sections of the soil surface on z = 0
then in place of the function φ′ given by (24) it is convenient to use
the Green’s function

φ′(x, z) = − 1

2π
(K

(1)
0 (r) + K

(1)
0 (r̄))

+
1

π
eb

∫ ∞

b

e−µK
(1)
0 (

[
(x− a)2 + (z + µ)2

]1/2
) dµ , (26)

where r̄ = ((x−a)2+(z+b)2)1/2 . With this choice of the function φ′

the term φ′ − ∂φ′/∂n is zero on z = 0 .

5 Numerical results

The boundary integral equation (25) in conjunction with the bound-
ary conditions (17,18,21,22) is used to determine the matric flux po-
tential for a variety of configurations of the irrigation channels. In
this section numerical results are given for the matric flux potential
associated with infiltration from a flat strip, a semi circular channel
and a rectangular channel (see Figures 2, 3 and 4).
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Figure 2: Flat strip source
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Figure 3: Semi-circular strip source (a = 0.2/π)
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Figure 4: Rectangular strip source
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Figure 5: Values of θ along the interior line x = 0.15

In each case numerical values of the matric flux potential on the
lines x = k for various values of k are given in graphical form in
Figures 5, 6, 7 and 8. The values of the reference length αL/2 and
αD/2 are taken to be 0.1 and 0.5 respectively.

To obtain these numerical values from equation (25) standard
boundary element methods were employed [3]. The boundary was
divided into segments to facilitate the replacement of the integrals
in (25) by a sum; thereby enabling the replacement of the integral
equation (25) by a system of linear algebraic equations for the un-
known function Ψ(a, b) . The number of segments was increased
until convergence of the values of the function Ψ(a, b) was achieved
(to four decimal places). To obtain this level of convergence it was
necessary to take the shaded region in Figure 1 to lie between the
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Figure 6: Values of θ along the interior line x = 0.25
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Figure 7: Values of θ along the interior line x = 0.35
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Figure 8: Values of θ along the boundary line z = 0
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planes z = 0 and z = 4 (using condition (22) ∂Ψ/∂z = −Ψ on z = 4)
and to divide the boundary into 1100 segments.

The numerical values shown in Figures 5–8 for the matric flux
potential indicate clearly the effect of the variation of the potential
for the three channel problems considered in this section. Note that
in each case the surface area through which water could infiltrate
was taken to be identical so that the same volume of water per unit
time infiltrated from each of the three channels.

The results show that the matric flux potential is not greatly al-
tered by replacing the flat channel by a semi-circular channel (Fig-
ure 3). In contrast replacement of the flat channel by a rectangular
ditch with the bottom of the ditch covered with an impermeable
layer gives substantially increased values for the matric flux poten-
tial. This is particularly the case near the surface z = 0 where the
plant roots are likely to be most evident.

6 Summary

A boundary element method has been obtained for the solution of
a class of problems involving infiltration from a series of periodic
irrigation channels. The method has been used to compare the ef-
fectiveness of some particular channel profiles by determining the
distribution of the matric flux potential for the channels under con-
sideration.The matric flux potential associated with the flat strip
and semicircular channel are shown to be similar; whereas a par-
ticular rectangular channel is shown to substantially increase the
potential in regions adjacent to the channel sides.
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