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How much of a near infrared spectrum is
useful? Sparse regularization—let the data

decide!
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Abstract

In information recovery from indirect measurements of the phe-
nomenon of interest (e.g., near infrared spectra of milk powders or
pharmaceuticals, or Raman spectra of explosives or anaesthetics) the
available data can be partitioned into two separate components: (i) the
information which encapsulates the answer to the question under ex-
amination (the proportion of casein, the major protein component, in
milk powder, the presence or absence of explosives, the monitoring
of anaesthetic and respiratory levels during surgery); and (ii) a con-
siderable amount of superfluous information, the presence of which
compromises the reliability of the answer to the question of interest. In
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such spectroscopic situations, for the identification of the information
that encapsulates the answer, a variety of techniques are used such
as partial least squares, neural networks and support vector machines.
With respect to the available calibration data, the support vector ma-
chines procedure performs an implicit form of sparse regularization.
In this article, the aim is to show how, using the Beer–Lambert law
and derivative spectroscopy, the sparse regularization is performed in
an explicit manner. This information can be subsequently utilized to
construct, using statistical regression, an appropriate predictor. Here,
the goal is to give a proof-of-concept for the application of derivative
spectroscopy as an explicit sparse regularization protocol. For this, the
calibration data consists of near infrared spectra of milk powder spiked
with known amounts of casein, while the property of interest is the
proportion of casein in the milk powder.
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1 Introduction

Because of the speed and accuracy with which near infrared (nir) spectra of
biological and non-biological samples can now be recorded, the information
that they contain is playing an increasingly relevant role in daily decision
making. Is the mango ready to pick? Has the coffee powder been adulterated?
Is the wine in the bottle the same as stated on the label? How much should
the farmer be paid for the wheat? What is the casein content in this milk
powder sample?

In order to answer such questions, the initial step is to identify wavelength
regions in the recorded spectra of the samples that carry information relevant
to the specific question under consideration. The relevant wavelength regions
change as the questions change. The reason for this change is that a spectrum
records the molecular vibrations of all the different components making up
a material, whereas the information required for decision making usually
only relates to the presence or absence of some specific component in the
material: the sugar content of the mango; the presence of starch in the
coffee powder; the components that are stated on the label; the gluten in the
wheat; the casein in the milk powder. In addition, because the molecular
structure of the individual components of a material (e.g., casein in milk
powder) are different, their molecular vibrations occur in different distinct
wavelength bands. For example, at 20oC, the nir wavelength intervals where
water molecules vibrate are centred around 760, 970, 1190, 1450, 1940 nm.
For proteins, there are always vibrations in the wavelength interval around
2180 nm, which correspond to amide linkage in the protein backbone.

The situation is complicated by overlapping wavelength bands of different
components of the material. For example, the wavelength bands of the amylose
and amylopectin components of starch have strong overlapping [8]. In addition,
the protein vibrations centered around 2180 nm tend to be confounded by
the absorbance due to starch at 2100 nm [7]. Consequently, where possible,
for the component of interest, one is interested in the wavelength intervals
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which are not confounded by molecular vibrations associated with some other
component(s). If such intervals are present, then they are the ideal wavelength
regions to utilize for the construction of a predictor, using an appropriate
regression procedure.

The aim of this article is to show how derivative spectroscopy is utilized to
determine whether or not there are wavelength intervals where no overlapping
occurs. The basic assumption that underlies the proposed methodology is
that, for the spectra that make up the calibration data, no overlapping occurs
for the component of interest if there exist wavelengths for which the ordering
of the fourth derivative values of the spectra are exactly the same as the
proportions of that component in the sample. As explained algebraically in
Section 3.1, this is implemented computationally by using some appropriate
measure of how well the ordering of the derivative values correlates with the
ordering of the proportional presences. Any correlation measure would be
appropriate and would represent a useful expedient for asssessing the level of
confounding as a function of wavelength. The importance of this approach
is that it naturally allows for the possibility that there are no wavelength
intervals where there is no confounding. When this occurs, it is important to
know where the confounding is minimal, since this represents an identifier for
the wavelength regions which have a strong connection to the property to be
calibrated and predicted.

The aim is to give a proof-of-concept for the proposed method. For this,
the calibration data are the nir spectra for milk powder spiked with known
amounts of casein, while the property of interest is the proportions of casein
in the milk powder.

Traditionally, the identification of the wavelength intervals was performed
using some appropriate calibration procedure such as partial least squares
(pls), neural networks or support vector machines. The calibration data
consists of a set of representative spectra and the associated measured values
of the property of interest (e.g., proportions of some key component) for
which a predictor is to be constructed. Such methods perform and exploit an
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implicit form of sparse regularization. They approximately identify, via some
iterative procedure applied to the calibration data, a subset of wavelength
intervals for which there is a strong correlation with the values of the property
and simultaneously utilize this information in the construction of the required
predictor, exploiting the linearity of the relationship between the spectra and
the values of the property. The essential background about nir spectra and
sparse regularization is discussed in Section 2.

The relevance of the proposed derivative spectroscopy methodology is that it
represents an explicit sparse regularization protocol in that the existence or
otherwise of non-confounded wavelength intervals is determined directly from
the values of the fourth derivatives of the spectra. The derivative spectroscopy
analysis of the spiked milk power data is examined in Section 3.

From a practical perspective, an additional motivation is that the design costs
for instruments performing specific tasks, such as monitoring the sugar content
in mangoes, is reduced if a small number of non-confounded wavelength
intervals are available and known.

2 Background and notation

2.1 Structure of the spectra of the spiked samples

Let Scasein(λ) and Snon(λ) denote the (theoretical) nir spectra of pure casein
and the non-casein component in milk powder, respectively (ignoring the
scattering effect due to sample packing). The J− 1 spiked samples, numbered
j = 1, 2, . . . , J− 1 , were prepared by adding different proportions of casein pj ,
0 = p1 < p2 < · · · < pJ−1 , to unspiked milk powder. Prior to spiking, the
milk powder contains proportional amounts α and (1 − α) of casein and
non-casein, respectively. Therefore, for the jth sample we determine the
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proportion of casein and non-casein in the milk powder:

ssj = pj [added casein]+ (1− pj)[α+ (1− α)] [milk powder]
= [α+ (1− α)pj] [casein]+ (1− pj)(1− α) [non-casein].

The proportion of casein and non-casein in the jth spiked sample are aj = [α+
(1−α)pj] and (1−aj) = (1−pj)(1−α) , respectively. As a direct consequence
of the Beer–Lambert law [7], the observed nir spectral responses Smp,j(λ) ,
j = 1, 2, . . . , J − 1, of the spiked samples are the proportional sums of the
spectral responses of the casein and non-casein components:

Smp,j(λ) = ajScasein(λ) + (1− aj)Snon(λ) , j = 1, 2, . . . , J− 1 . (1)

The non-spiked milk powder sample corresponds to p1 = 0 and, consequently,
to a1 = α . The special case where the sample consists only of casein is now
included as the Jth sample with aJ = 1 .

The ability to decompose the observed spectra of the samples, as shown in
equation (1), is the reason why the spectroscopic analysis of a (biological) ma-
terial can be utilized to determine the proportions of the various components
in that material. The underlying molecular rationale is that the measured
spectral response of a pure substance, such as casein, at a wavelength λ, is
proportional to the number of side chains of that substance vibrating at that
wavelength and that the number of side chains is proportional to the weight
of the pure substance.

The Beer–Lambert law was initially formulated for fluids [7, 6, 4]. For
wavelength dependent absorbance σ(λ) and path length of absorbance through
the fluid `, this law gives the total absorbance of a material with K components:

A(λ) = σ(λ)`

(
K∑
k=1

Nk

)
, (2)

where Nk denotes the density (number per unit volume) of the kth molecular
component.
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2.2 NIR spectroscopy analysis

An nir spectrum of a biological material records, as a function of wavelength λ,
the intensity of the vibrations of the various side chains of the molecules in
the sample. For a pure substance such as casein (virtually the only protein in
unadulterated milk), its nir spectrum Scasein(λ) (Figure 1(a)) is an identifying
signature. To remove the background linear particle scatter effect in an nir
spectrum, such as that in Scasein(λ), it is common practice to use the second
derivative, with respect to wavelength, S(2)casein(λ) = d

2Scasein/dλ
2 (Figure 1(b))

as the casein signature. However, because it is the negative peaks in S(2)casein(λ)
that identify the positive peaks in the measured Scasein(λ), it is more natural
to work with the fourth derivative of the spectrum S

(4)
casein(λ) (Figure 1(c)),

since its positive peaks are in phase with the positive peaks in Scasein(λ).

The sparse fingerprint of Scasein(λ) is defined to be the set of wavelength
intervals S(4)

casein;δ(λ) at which the intensity of the fourth derivative S(4)casein(λ)
exceeds some representative positive threshold δ. The value of δ is chosen
to localize the intervals to contain the theoretical wavelengths of the indi-
vidual side chain vibrations (such as an O-H vibration) with the resulting
width of each interval being a measure of the spread of the wavelength vi-
brational energy caused by the side chain configuration within the material
being studied. Importantly, S(4)

casein;0(λ) identifies the set of positive peaks
in S(4)casein(λ). As illustrated in Figure 1, as well as having its positive peaks in
phase with the positive peaks in the spectrum, the fourth derivative performs
a localization through its implicit resolution enhancement behaviour. Conse-
quently, a representation such as S(4)

casein;δ(λ) becomes the sparse identifier for
the pure substance. Some representative examples of the intervals identified
by S(4)

casein;δ(λ) for the casein spectrum are plotted in Figure 2 for two different
values of δ, with the blue bands corresponding to the smaller value of δ. They
illustrate how, as δ increases, the sparsity becomes more pronounced, with
the narrower green bands corresponding to the larger value of δ. The blue
and green bands are replotted along the wavelength axis to highlight how the
sparsity becomes sharper.
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Figure 1: The nir casein spectrum: (a) the spectrum; (b) the second deriva-
tive; (c) the fourth derivative.
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Figure 2: Plots of S(4)
casein;δ(λ) of the casein spectrum for two different values

of δ, illustrating how, as δ increases, the sparsity becomes more pronounced.
The green bands correspond to the larger value of δ and are clearly narrower
and fewer than the blue bands. Below the spectra, the blue and green bands
are replotted along the wavelength axis to highlight the increase in sparsity.

For a mixture of biological molecules consisting of K separate molecular
components (as in milk powder or wheat grains), each with spectra Sk(λ),
k = 1, 2, . . . ,K , some of the intervals will overlap forming the sets S(4)

k;δ(λ),
k = 1, 2, . . . ,K . Such overlapping corresponds to the confounding discussed
in Section 1.

2.2.1 The experimental protocol

When the goal is to determine the proportion of some key molecule in a
given mixture (such as casein in milk powder), one is given, for a number of
representative samples, their (nir) spectra and the corresponding proportions
of the key molecule. Often, the proportions are measured. However, in
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many practical situations the actual measurement protocol is time-consuming,
expensive and sometimes dangerous. This problematic situation arises when
determining the proportional presence of protein in a wheat sample as the
experimental/estimation protocol is based on knowing its nitrogen content,
since nitrogen is only found in the proteins. In addition, such situations
greatly limit the number of spectra and corresponding proportional presences
that can be recorded to answer the question under investigation. Because
an appropriate simple experimental/estimation protocol is not available, the
alternative is to perform calibration and prediction [5, 6, 1]. As mentioned
previously, a measured spectrum contains a considerable amount of super-
fluous information which does not directly help answer the question under
consideration. It is the exploitation of this fact that is the rationale behind
methodologies such as pls, neural networks and support vector machine pro-
tocols. In one way or another, these methods identify, through a calibration
procedure, the set of wavelength intervals that encapsulate the information
necessary to define a predictor to answer the question.

The milk powder example described previously is representative of a wide
range of practical situations, including testing for adulteration. There, only
some representative wavelength intervals associated with the presence of one
specific molecule (casein) are required. When a pure sample of the single
molecule is available, as in casein and many other adulteration scenarios,
the methodology is reversed. The (proportional) presence of the specific
molecule in the material of interest is orchestrated by spiking that material
with different known amounts of the pure molecule. Through the utilization
of derivative spectroscopy, the implementation of sparse regularization is
reduced to experimentally determining the intervals S(4)

casein;δ(λ) where changes
are occurring as a result of the spiking.

The goal is the identification of the subset of intervals S(4)
casein;δ(λ) which

identify side chain vibrations in the casein component of milk powder and
that do not interact with the non-casein components. This highlights how
the application under consideration introduces additional constraints on the
nature of the sparse regularization required. The sparse regularization must
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take account of cross-interactions that occur between vibrations in some side
chain components in the casein and non-casein components of the milk powder.
For a given threshold δ, it is necessary to identify the intervals S(4)

casein;δ(λ) for
the side chain vibrations in the casein which do not cross-interact with the
non-casein components.

2.3 Derivative spectroscopy analysis of (milk powder)
nir spectra

The focus of the current deliberations is the identification of features in
a milk power spectrum that can be utilized to predict proportional casein
content. This identification could be done with pls [5, 6]. However, as already
mentioned, the sparse regularization that pls performs is quite implicit. The
nature of the regularization performed by pls can be explained in terms of
simultaneous minimization and total least squares [1].

In this article, the goal is to show how to perform the identification as an
explicit sparse regularization procedure by using derivative spectroscopy to
exploit the structure in the nir spectra of milk powder spiked with casein.
The essence of the situation is illustrated in Figure 3, where the spectra of
normal milk powder and pure casein are plotted, as well as the difference
between the two spectra. In theory, the difference should highlight and
identify the non-casein components in the milk powder. In practice, this
is not achieved because, due to sample particle scattering spectra contain
independent linear trends which change from one sample to the next [7, 6, 4],
and because some of the non-casein components in the milk powder have side
chains which vibrate in a similar manner to the side chains of casein.

Because the scattering effect is essentially a linear function of the wavelength λ,
it is removed by taking the second derivative of the data. In addition,
the implicit utility of the second derivative is that it performs a resolution
enhancement [2], as illustrated in Figure 4. This motivates and validates the
explicit utility of derivative spectroscopy.
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Figure 3: Comparison of a representative milk powder spectrum with that for
casein: (top) typical milk power and casein spectra; (bottom) the difference
between these two spectra.
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Figure 4: Resolution enhancement for the milk powder spectrum from the
second and fourth derivatives.
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The successful numerical differentiation of highly accurate data on a very fine
grid (such as the nir data being considered here) is possible through the use
of moving average differentiators with an appropriately large footprint [2].
As explained by Anderssen and Hegland [2], it is the size of the footprint,
as a function of the level of discretization determining the fineness of the
grid, that performs the regularization which accommodates a high order of
differentiation before instability becomes apparent. The utility of numerical
differentiation to perform resolution enhancement has a long history and,
historically, was given the name derivative spectroscopy [3].

3 Sparse regularization for spiked NIR data

Here, the focus is the spiking of samples of the same milk powder with different
proportions pj of casein, j = 1, 2, . . . , J . In terms of the notation introduced
in Section 2.1, the proportions of casein in the samples are, in ascending
order:

a1 = α [unspiked milk powder] < a2 < · · · < aJ = 1 [only casein].

For j = 1, 2, . . . , J the corresponding recorded spectra are represented as the
row vectors

MPTaj =
[
MPaj(λ1),MPaj(λ2), . . . ,MPaj(λK)

]
,

where MPaj(λk) denotes the milk powder spectra at wavelength λk when the
proportion of casein is aj . The above sparsity identification can equally well
be applied to the spectrum of the unspiked milk powder (without added
casein). The counterpart of Figure 2 then becomes that shown in Figure 5.
A comparison of the plots in these two figures shows clearly how, even for
different related situations, the nature of the sparsity changes.

The rectangular matrix array generated by row vectors MPTaj with j =
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Figure 5: Plots of S(4)
mp;δ(λ) for the milk powder (mp) for two different values

of δ.

1, 2, . . . , J , is

MP =


MPa1(λ1) MPa1(λ2) · · · MPa1(λK)
MPa2(λ1) MPa2(λ2) · · · MPa2(λK)

...
... · · · ...

MPaJ(λ1) MPaJ(λ2) · · · MPaJ(λK)

 . (3)

The matrix of the fourth derivatives of these spectra is MP(4), with MP(4)
aj

(λk)
denoting the values of the fourth derivatives of the milk powder spectra at
wavelength λk when the proportional amount of casein is aj . The opportunity
that this set of spectra provides for identifying the appropriate intervals
to be used as predictors of casein content is illustrated in Figure 6, where
two localized wavelength regions of the spectra are highlighted. The top
plot is indicative of strong confounding between the side chain vibrations
of the casein and the non-casein components in the milk powder, whereas
the bottom highlights minimal confounding. In the bottom plot, the heights
(intensities) of peaks to the left of the 1200 nm wavelength correlate strongly
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and positively with the levels of spiking, whereas for the peaks to the right
the heights correlate inversely with the levels of spiking.

Figure 6 highlights how, for different levels of spiking, the fourth derivatives
change as a function of the wavelength. In particular, there are two distinct
situations, as described below.

1. For appropriate choices of δ there are wavelength intervals of S(4)
casein;δ(λ)

(such as in the wavelength region 1100–1300 nm) where the correspond-
ing peaks of the MP(4)

aj
, j = 1, 2, . . . , J , have very similar profiles, indi-

cating that the associated casein side chain vibrations are independent
of the side chain vibrations in the non-casein components of the milk
powder.

2. For appropriate choices for δ, there are wavelength intervals of S(4)
casein;δ(λ)

(such as in the wavelength region 450–600 nm) where the corresponding
peaks of the MP(4)

aj
, j = 1, 2, . . . , J , have clearly different profiles, indi-

cating that there are interactions of side chain vibrations between the
casein and the non-casein component of the milk powder.

From a sparse regularization perspective, only the intervals associated with
Situation 1 are appropriate as predictors of the casein content in milk powder.
Since the intervals S(4)

casein;δ(λ) for pure casein are known, the identification
reduces to finding the subset of these intervals for which the peaks in MP(4)

have the same ordering as the proportions of casein a1 < a2 < · · · < aJ . For
the intervals associated with Situation 1, the heights of the peaks correlate
closely with the proportional ordering. Because such invervals do not involve
confounding of the molecular vibrations of the casein with the molecular
vibrations of the non-casein components, this is an immediate consequence of
the Beer–Lambert law. Even for Situation 2 the Beer–Lambert law still holds,
but now the nir response to molecular vibrations of non-casein components
are added to the nir responses of the casein component.
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Figure 6: Plots of MP(4)
aj

(λk), for j = 1, 2, . . . , J , for two localized wavelength
regions showing: (top) severe confounding; (bottom) minimal confounding.
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3.1 A simple algorithm to test how fourth derivative
values correlate with the levels of the spiking.

As already noted in Section 1, any correlation measure could be used to test
how well the ordering of the fourth derivatives MP(4)

aj
, j = 1, 2, . . . , J, correlate

with the ordering of the proportions of casein a1 < a2 < · · · < aJ , as long as
the data to which it is applied is suitably scaled.

An assessment of the extent to which the ordering of the fourth derivatives cor-
relates with the level of spiking is perform using the spectral values MP(4)

aj
(λk),

j = 1, 2, . . . , J , for each λk . Its implementation involves working with the
columns of the J× K rectangular matrix MP(4) defined in equation (3). The
relative changes in the fourth derivative values are highlighted by removing the
magnitude effect, which corresponds to mean centering each of the columns
of MP(4). The mean centering (meanc) matrix of MP(4) is

MP(4)
meanc = [s1, s2, . . . , sK] ,

with column vectors sj .

Because the same volume of milk powder is used for each spiking, the activity
of non-casein components in the columns of MP(4)

meanc are removed along with
the magnitude of the activity associated with casein. Let a∗ denote the
column vector obtained by mean centering the column vector (a1,a2, . . . ,aJ) .
The simple test is to assess how well some multiple of an sk correlates with a∗;
namely, evaluate

Ek = (α̂ksk − a∗)T(α̂ksk − a∗) , α̂k =
sTka

∗

sTksk
. (4)

The values of Ek , as a function of k, and hence λk , are plotted as a ‘rug’
along the bottom of Figure 7, with white and red denoting a good and a poor
correlation, respectively; that is, minimum and maximum confounding. The
pink shading denotes the extent of the confounding which occurs between
the minimum and the maximum. The role of the rug is to give an easily
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Figure 7: A plot of Ek as a function of k as a rug, compared with the fourth
derivative spectrum of milk powder with different spiking.

accessible visual characterization of the level of confounding as a function of
the wavelength λk .

4 Conclusion

Here, the goal is to give a proof-of-concept for the application of derivative
spectroscopy as an explicit sparse regularization protocol. For this, the
calibration data consists of the nir spectra for milk powder spiked with
known amounts of casein, while the property of interest is the proportional
presence of the casein in the milk powder.
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