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Abstract

We present a parsimonious model for describing the stochastic
dynamics of electricity demand in the nsw region of the National
Electricity Market. We apply a moment matching approach to cali-
brate the parameters and perform in-sample and out-of-sample tests to
demonstrate the model’s capability and weaknesses. We show a solid
improvement when the calibration uses the minimum and maximum
daily temperatures in the regression. We clearly express the relationship
between the drift term and the expected demand, which is a nontrivial
connection and has not been made explicit in other publications.
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1 Introduction

In both regulated and market-based wholesale electricity systems, the short-
term and long-term predictions of power demand are crucial to operating a
secure and reliable system. Electricity demand fluctuates from hour to hour,
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day to day and season to season, based on the aggregate domestic, commercial
and industrial loads attached to the network. Forecasting activities performed
by the power system operator and by market participants involve estimating
expected outcomes as a point forecast, but also establishing the statistical
dynamics of the system demand. Periods of high demand create stresses on
transmission and distribution network infrastructure, create opportunities
for generators and introduce significant financial risks for electricity retailers.
Modern deregulated electricity markets exhibit extremely volatile spot prices
set by complex market rules involving power station supply offers and the
prevailing system demand [1]. In this article, we present a simple diffusion
equation (1) to model electricity demand in the New South Wales (nsw)
region of the Australian National Electricity Market (nem). This study fulfils
several objectives, as detailed in the following points.

1. We present a parsimonious three-parameter model for describing the
stochastic behavior of electricity demand.

2. A calibration approach is developed to fit the model parameters, apply-
ing a moment-matching technique.

3. The performance of the model is assessed to represent the statistical
dynamics of historical demand data using in-sample and out-of-sample
tests.

2 Electricity demand

Electricity demand data represents the aggregate instantaneous consumption
of electrical power by all loads (or equivalently the aggregate production of
electricity by generators). Electricity demand in the nem is captured by
the many electricity meters installed in the electricity network and reported
by the market operator aemo in half-hourly resolution. The demand time
series contains several anthropomorphic characteristics, including a diurnal
shape, a weekly pattern with distinct demand levels for different day types
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and a seasonal pattern across the year with demand peaking in summer and
winter. Electricity demand exhibits a degree of unpredictability, which is
driven by random deviations in consumption, which are in turn motivated by
weather, economic growth, major sporting events, power distribution network
failures and myriad other factors [4, 11, 9]. Diffusion equations (Ito stochastic
differential equations) are applied widely through physical and social sciences
to model time-continuous quantities exhibiting uncertainty. The electricity
demand process appears ideal to model with this technique owing to the high
frequency of the data (closely approximating a continuous-time process) and
the deviations which are driven by continuous changes in usage by many
individual consumption agents. For the current study, data is available from
the Australian National Electricity Market which disseminates 5 minute and
30 minute demand data over a 14 year history. The figures in this article
illustrate samples of electricity demand.

Extensive research was carried out by other authors using a variety of modeling
techniques to predict electricity demand. Neural networks [13], regression
methods [6], time series techniques [15, 7], econometric modeling [16] and
singular value decomposition methods [8] have all been applied. Other
authors conducted modeling of the demand as a stochastic process depending
on a latent variable (typically weather) [18, 6] or without any exogenous
dependencies [17].

3 Model formulation

3.1 Stochastic differential equation

We model electricity demand with an Ornstein–Ulenbeck equation [12] con-
taining a time dependent drift term. Similar models [2, 9, 12] analysed either
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demand or price processes. Denote aggregate electricity demand as S, defined
by a time-continuous stochastic process:

dS(t) = θ[µ(t) − S(t)]dt+ σdW(t) . (1)

Here θ is a mean reversion rate, µ(t) is a time dependent function which
provides a target level for the mean reversion and σ is the arithmetic volatility.
In model (1), the fluctuations arising from weather outcomes are contained
in the volatility factor σ. The model is enhanced to

dS(t) = θ[µ(t, T) − S(t)]dt+ σdW(t) , (2)

with a more complex drift term dependent on both time and temperature T(t) .
However, the model only has utility if a suitable forecast or governing process
for T is available.

3.2 Characteristics of SDE solution

The solution of the sde is established by a standard technique [12] by em-
ploying Ito’s Lemma and applying an integrating factor.

Lemma 1. The solution to the initial value problem (1) is

S(t) exp(θt) = S(0) +
∫ t
0

θµ(τ) exp(θτ)dτ+
∫ t
0

exp(θτ)σdW(τ) . (3)

Lemma 2. The solution to initial value problem (1) has the first moment,
variance and skewness, respectively,

E[S(t)] = S(0) exp(−θt) + exp(−θt)
∫ t
0

θµ(τ) exp(θτ)dτ , (4)

Var[S(t)] =
σ2

2θ
[1− exp(2− θt)] , (5)

E
(
[S− E(S)]3

)
= 3 exp(−θt)S(0)E(S)

(
σ2

2θ
− 1

)
. (6)
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Proof: Taking first moments of (3) and exploiting the fact that the expec-
tation of an Ito integral is zero [12] yields expression (4). Taking the variance
of each side of (3),

exp(2θt)Var[S(t)] = σ2 E
(∫ t

0

exp(θτ)dW(τ)

)2
=
σ2

2θ
[exp(2θt) − 1] ,

yielding the result for the second moment. The third and higher moments
follow in a similar way. ♠

Lemma 3. Throughout, define S̄(t) = E[S(t)] . It follows that

µ(t) =
1

θ

d

dt
S̄(t) + S̄(t). (7)

Proof: Apply expression (4) to give

S̄(t) = exp(−θt)
[
S(0) +

∫ t
0

θµ(τ) exp(θτ)dτ
]
.

Differentiate with respect to t and rearrange to yield the result. ♠

Lemma 4. The autocorrelation of the process governed by (3) with lag λ is

ρ[S(t+ λ),S(t)] =
(

1− exp(−2θt)
1− exp[−2θ(t+ λ)]

) 1
2

exp(−λθ). (8)
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Proof: The proof follows analogously to the case of constant µ,

ρ[S(t+ λ),S(t)] =
E[S(t+ λ)S(t)] − E[S(t+ λ)]E[S(t)]

{Var[S(t+ λ)]Var[S(t)]}1/2

=
E[S(t+ λ)S(t)] − S̄(t+ λ)S̄(t){

σ2

2θ
[1− exp(−2θ(t+ λ)][1− exp(−2θt)]

}1/2 .
The expression simplifies to the result by exploiting the fact that expectations
of the diffusion terms are zero. ♠

3.3 Demand regression model

To perform the calibration of the sde, a key element in our method involves
the mathematical expectation for the demand at each point in time. We
apply a regression model to estimate the expected demand and to later
generate estimates for variance and other statistics. Our approach applies a
common industry technique of segmented regressions. The basic regression
model is further enhanced to include temperature. For the basic regression
model consistent with sde (1), we define the model for expected demand D
dependent on time t in years, commencing from 1-Jan-2000, and a seasonal
characteristic. The seasonality contains an annual and biannual frequency,
attributable to both summer and winter events causing elevated demand
periods. Define the 8× 48 segmentations:

• Daytype d ∈{Mon, Tues, Wed, Thu, Fri, Sat, Sun, Public Holiday}.

• Period p ∈ {1, 2, . . . , 48} , is the halfhourly period of each day.

We let

D = f{d,p}(t)
= a0{d,p}+ a1{d,p}t+ a2{d,p} cos(2πt) + a3{d,p} sin(2πt)

+ a4{d,p} cos(4πt) + a5{d,p} sin(4πt) . (9)
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For the extension to accommodate temperature in model (2), the basic regres-
sion is enhanced on the basis of a biquadratic relationship for temperature.
The quadratic dependence is a well studied behavior and is empirically sup-
ported by our case study in Section 5. Let Tmin and Tmax represent the daily
minimum and maximum temperatures, respectively, at a nominated weather
station. We extend model (9) to a temperature-dependent regression by

D = g{d,p}(t, Tmin, Tmax)

= a0{d,p}+ a1{d,p}t+ a2{d,p} cos(2πt) + a3{d,p} sin(2πt)
+ a4{d,p} cos(4πt) + a5{d,p} sin(4πt) + +b1{d,p}Tmin + b2{d,p}Tmax

+ b3{d,p}TminTmax + b4{d,p}T 2min + b5{d,p}T
2
max . (10)

4 Model calibration approach

4.1 Literature

Our objective is to establish suitable parameters in (1) and (2) to best describe
the statistical dynamics of demand. Using a direct naïve substitution, one
may (falsely) assert that

µ(t) = S̄(t) . (11)

It is standard practice in industry to denote µ(t) as the ‘mean reversion
level’ for expression (1) (and variants of that equation). The popular text
by Geman [9] which is used extensively by practitioners also developed equa-
tion (1) as a mean reverting model for price rather than demand. While µ(t)
is described as the ‘trend’, by Geman, the text contains no specific calibration
for the form of µ(t) . Alcock et al. [2] developed a model of the form

dSt = α[S
∗ − log(St)]St dt+ StσdW + StKdqt ,
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and refered to S∗ as the mean reversion level. Through the development and
calibration of the model, they arrived at an intermediate expression containing
the equivalent of our equation (7). Goard and Hansen [10] also performed
calibration of a similar sde using a generalized method of moments. Blanco
and Soronow [3] presented a version of (1) and described the mechanics of
mean reversion driven by the drift. They used a constant S∗ in place of
our term µ(t) and claimed that S∗ is the long-run equilibrium. The authors
provided explicit calibration steps which only remain valid for constant S∗.
However, for the model with time dependent drift it becomes quickly apparent
that if the naïve substitution (11) is made, then the first moment of the
solution to (1) suffers a time lag to the desired result S(t) . The inaccuracy
does not arise for a time independent mean-reversion level.

4.2 Methodology for calibration of the SDE

By inspection, the solution (3) is seen to exhibit a Gaussian distribution.
Consequently, the controls availed to the calibration process (selection of µ,
θ and σ) yield a solution of limited characteristics and the parameter fitting
becomes a process of establishing the best fit according to certain objectives.
Although we have three parameters, we are unable to fit the first three
moments as the solution is governed by a normal distribution (with only two
degrees of freedom).

Our primary condition is governed by matching the first moment. Suppose
that the historical mean behaviour or forecast for expected demand is given
by S̄(t) . Then Lemma 3 yields the first calibration equation (7).

The secondary objective is to match the second moment of the solution. Il-
lustrations of the electricity demand process demonstrate that the demand at
any given time can assume a large excursion away from the mean shape. Ex-
pression (5) conveys the variance of the solution (3) which clearly approaches
the constant σ2/2θ as time increases.
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The comparison of historical demand against the fitted demand enables us to
estimate the variance of S(t) at each future point in time on the basis of the
residuals arising from the regression. In reality, the variance might have a time
dependent structure which is not accommodated within our proposed model
containing constant values of θ and σ, but this is beyond the capabilities of
the proposed parsimonious model.

Let V(t) be the projected variance of S(t) at each point in time over a future
horizon [0, T ] . The optimal fit to match the second moment in a least squares
sense is

min
σ,θ

[∫ T
0

(
V(t) −

σ2

2θ
[1− exp(−2θt)]

)2
dt

]
. (12)

If we assume that T is large (that is, the demand model is designed to
project over a long future horizon), and make the a priori assumption that
our calibration yields θ > 0 , then exp(−2θt) is treated as transient. The
minimization (12) is then achieved by

σ2

2θ
=
1

T

∫ T
0

Vτ dτ , (13)

which is interpreted as the time-averaged variance.

Expressions (7) and (13) leave one degree of freedom remaining in specifying
the model parameters. However, expression (6) conveys there is no benefit
in matching higher moments since the Gaussian nature of the distribution is
predetermined. When we inspect the nature of the trajectories of solutions
to (3) generated by parameters from the family satisfying (7) and (13), it
becomes apparent that the solutions differ by their ‘clustering’ behaviour.
Matching the first two moments represents insufficient conditions to yield
a unique solution. Candidate solutions arise which yield small or large
mean reversion strength θ. The respective behaviour of the trajectories is
qualitatively described by slowly varying or rapidly varying envelopes of daily
demand patterns and so an additional statistic of the solution is required to
uniquely determine the sde parameters.
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Formally, we approach the parameter fitting by matching the autocorrelation
of observed data with the characteristics of the solution (3). For λ > 0 ,
Lemma 4 exposes the asymptotic behaviour:

ρ(S(t+ λ),S(t))→ exp(−λθ) . (14)

A common technique in statistical data fitting involves detrending data before
fitting statistics [5]. However, the approach here matches autocorrelations of
the solution S(t) directly with observed historical demand.

5 Case study: NSW region of the NEM

5.1 Data sources

The calibration was conducted using historical halfhourly demand from the
nsw region of the nem. The in-sample period for the regression covered
1-Jan-2000 to 30-Jun-2011. The out-of-sample testing was performed over
1-Jul-2011 to 30-Jun-2012. The weather station for temperature dependence
was Sydney Airport. Measures of the goodness of fit of the model were
performed by visual inspection of the time series, by comparisons of the
duration curve and through the residual error.

5.2 Regression fit

The regression models (9) and (10) were implemented on the in-sample data.
Figures 1 and 2 show the nature of the data exhibiting daily and weekly
patterns. We illustrate load shapes during a typical summer and winter week
to convey the way that the shape and quantum alter between seasons. The
regression fit yields the quantity S̄(t) .
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Figure 1: Simulated trajectories (green) from expression (1) for week starting
23-Mar-2009, regression fit (red) and historical (black).

5.3 Calibration of the SDE

The sde calibration proceeds by solving the system of equations (7), (13)
and (14). The lag λ was chosen as one day on the basis of the standard daily
cycle of demand patterns, that is λ = 0.0027 years.

The historical autocorrelation of demand data is calculated as 0.8917. Solv-
ing (14) yields θ = 45.006 year−1. Using alternative units, θ ≈ 1/8 day−1, or
in other words the half-life of a return to mean is log(0.5)/θ = 5.6 days, con-
sistent with the typical half-life of weather patterns [14]. The expression (7)
is now solved by direct substitution of θ and the regression outcome S̄(t) . We
use a one-sided finite differencing to estimate dS̄(t)/dt . Finally, solving (13)
yields σ = 4, 605.9 .

The R2 from the regression fit was 0.86. We interpret this in the standard
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Figure 2: Simulated trajectories (green) from expression (2) for week starting
23-Mar-2009, regression fit (red) and historical (black).

way that the daytype, time of day, season and point in the growth cycle
was able to explain 86% of the variability in demand. The standard error
(standard deviation of regression residuals) was 485MW, compared with
typical demands around 9000MW.

When the model was enhanced with the temperature dependence, an im-
proved regression was achieved with R2 = 0.91 and standard error diminished
to 411MW.

5.4 Results

The figures here represent results of the simulations arising from expressions
(1) and (2) on the basis of calibration conducted by the methodology described
in Section 5.3.
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Figure 3: Duration curve for solutions from unconditional model over in-
sample period for historical data (black) and simulated trajectories. In-
set: zoom into top end of curve.

5.4.1 In sample simulations

Firstly, for a typical in-sample week we present the actual nsw demand and
the regression-fitted demand for the same period using the unconditional
model and the temperature dependent model. The plots also contain ten
simulations of the sdes (1) and (2) to illustrate the distribution of demand
trajectories which may feasibly occur during the given time period.

The duration curve is a standard visualization used in the energy industry for
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Figure 4: Duration curve for solutions from temperature dependent model
over in-sample period for historical data (black) and simulated trajectories.
Inset: zoom into top end of curve.

presenting the cumulative distribution of outcomes [1] and simply represents a
plot of the sorted data. Figures 3 and 4 show the actual duration curve and the
results of ten simulations over the full historical calibration period. Importance
is assigned to the characteristics of the curve in the upper percentiles, because
this is the region that eventuates in most financial risk. It is clearly seen that
the temperature dependent model outperforms the unconditional model.
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Figure 5: Duration curve for solutions from temperature dependent model over
out-of-sample period for historical data (black) and simulated trajectories.

5.4.2 Out of sample simulations

Figure 5 shows the out-of-sample simulations compared with actual nsw
demand outcomes over Jul-2011 to Jun-2012. The results illustrate that since
2011 there has been a step-change downward in electricity demand. It is
unlikely to be attributable to solar photovolatic generation because the drop
is almost uniform over all times (including midnight when solar is clearly not
being generated). There were several large industrial closures in nsw, for
example, the Hydro Kurri Kurri smelter, which may explain the result.

5.4.3 Earth Hour

The Earth Hour event is an awareness campaign which aims to make the
consumer public conscious of energy useage. Its key event is a nominated hour
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Figure 6: In sample models of the 2010 Earth Hour actual demand, regressed
demand and simulations, conditioned upon known Sydney temperatures. The
Earth Hour period is between the vertical blue lines.

each year in which consumers are encouraged to reduce electricity demand.
The event is held at a nominated local time. Sydney is typically on daylight
savings time when Earth Hour event takes place. However, the nem operates
on Australian Eastern Standard Time.

We are able to use the regression model to establish the expected demand
during Earth Hour, and compare with the actual demand to establish the
net curtailment effects. The simulations of the sde provide confidence bands
in our forecast to enable us to establish the significance of any observed
reduction in consumption.

Figure 6 presents result for Earth Hour 2010, which occurred on 27 March 2010
from 8:30 to 9:30 pm local time (nem periods 40 to 41). Most interestingly,
the demand exhibits a slight rise above trend after Earth Hour, which may
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be explained by consumers simply deferring energy consumption rather than
reducing consumption.

The results illustrate that the level of curtailment for Earth Hour is almost
indistinguishable, and well within the level of noise regularly experienced.

6 Conclusions

The parsimonious models presented in (1) and (2) perform reasonably to
describe the deterministic and stochastic components of nsw regional electric-
ity demand. The introduction of temperature as a predictor variable in the
regression improved the model substantially, with residuals around 411MW
from the best regression.

The very simple model also contains known deficiencies. For example, the
volatility and mean reversion rates may themselves be time dependent. The
growth pattern was formulated as a linear relationship. However, for practical
purposes, the simplicity of this model provides a useful working model as
it enables explicit solution, quick and transparent calibration and rapid
simulation.

The calibration approach developed in this article leads to a very transparent
method for parameter estimation. It leads to uncoupled equations, in contrast
to techniques such as maximum likelihood which yield large systems of
equations requiring numerical solution.

An important exposition shows that µ(t), which is referred to throughout
industry and in many texts as the mean reversion level, is not, in fact, the
level to which the process targets. Instead its calculation by (7) is vastly
different from S̄(t) .

The model detected that the growth trend apparent through 2000–2011 does
not apply to 2012 and there is a reduction in electricity demand across all of
the stratifications by day type and time-of-day.
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To the accuracy of the regression model, and within the confidence bands
arising from the diffusion process, the effects of demand reduction arising
during Earth Hour events were of negligible impact.
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