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A technique for extracting potentially
predictable patterns from climate data
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Abstract

We propose a computational technique which makes it
possible to extract long-range potentially predictable pat-
terns of interannual variability of meteorological seasonal
mean fields. These patterns arise from slowly varying ex-
ternal forcing, such as sea surface temperatures, and slowly
varying internal dynamics. The method provides a means of
decomposing the covariance matrix of a seasonal mean field
into covariance matrices for the potentially predictable and
the chaotic, or weather-noise, components, separately. We
illustrate the technique using Australian surface maximum
temperatures during December-January-February (DJF) for
the period 1958-1991. The dominant patterns, arising from
the potentially predictable covariance matrix, are shown to
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be more closely related to slowly varying external forcing and
slowly varying internal dynamics than those from a conven-
tional analysis. The importance of tropical sea surface tem-
peratures in forcing the potentially predictable patterns is
also discussed.
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Over the last two and a half decades much effort has gone into de-
termining the potential for long-range (in advance of three months)

predictability of regional and global climate. Although the

atmo-

sphere is inherently chaotic, there is the potential for predicting the
seasonal averaged atmospheric circulation beyond the determinis-

tic predictability of synoptic scale weather (less than 15 day

s) be-

cause the low frequency state of the atmosphere is coupled to the
slowly varying potentially predictable ocean circulation. Madden [5]
was the first to introduce the idea of decomposing, conceptually, a
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seasonal mean of a climate variable into a potentially predictable
component and an unpredictable, or chaotic, component. The po-
tentially predictable component is associated with slowly varying
external forcings (such as, for example, sea surface temperatures
(ssTs), sea ice, vegetation coverage and radiative forcing) and slowly
varying internal dynamics (such, as for example, the quasi-biennial
oscillation). This component was referred to as ”potentially” pre-
dictable because the external forcing and the slowly varying (inter-
annual /supra-annual) internal dynamics are themselves potentially
predictable. Thus, for example, forecast schemes presently exist for
predicting, with good skill, variations in tropical Pacific ssTs. A cli-
mate variable which depended on these ssTs would therefore also be
potentially predictable. The chaotic component, commonly referred
to as weather noise, is associated with day-to-day weather events,
which are unpredictable beyond a couple of weeks. There are now
a number of techniques available for estimating the relative impor-
tance of the potentially predictable and weather noise components
of climate variability at any geographical location on interannual,
or greater, time-scales (see, for example, [7] and references therein).

However, an even more important problem, in the analysis and
prediction of climate, is to identify spatial patterns of inter-annual
variability (covariability) associated with the potentially predictable
component. Until now, empirical orthogonal function (EOF) analy-
sis, using the variance/covariance matrix of the seasonal mean cli-
mate variable, has been a common tool used to study the dominant
spatial patterns of variability in climate data. However, there is no
guarantee that the dominant patterns derived by such techniques
will be closely related to the slowly varying external forcings or inter-
nal dynamics. This is especially true in the extra-tropics where the
weather noise component of atmospheric variability may be quite
large. Ideally, the EOF analysis should be applied to the variance/
covariance matrix of the potentially predictable component. Until
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now this has not been possible.

Here, we propose a method for separating the covariance matrix
of a climate variable into covariance matrices associated with the po-
tentially predictable and weather noise components, thus allowing
patterns of each component to be derived separately. The technique
is applied to a study of inter-annual variability of Australian surface
air maximum temperatures using high quality data from 78 stations
of the Bureau of Meteorology, for the period 1958-1991. We also
show how the potentially predictable patterns can be used to iden-
tify significant predictors of temperature variability associated with
specific external forcings, such as, for example, tropical ssTs, which
are perhaps one of the most important external forcing of climate
at the inter-annual time-scale.

The plan of this paper is as follows. In Section 2, we discuss
the methodology, the observed temperature data and SST data are
described in Section 3, and the results are presented in Section 4.
Our conclusions are summarised in Section 5.

2 Methodology

The method described herein relies on the availability of a daily
time series of the meteorological variable (say x) over a number of
decades. It is also assumed that the mean annual cycle has been
removed from the daily time series. Conceptually, we consider a
daily anomaly in a particular year, day and geographical location, as
consisting of a potentially predictable component, which is related
to the interannual and supra-annual variability of external forcings
and internal dynamics and may therefore be regarded as a constant
over the season, and an unpredictable chaotic component arising
from day-to-day weather variability. Thus, a daily anomaly x,,(r) is
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represented by a simple linear model as

Tye(1) = py(r) + 4e(r) - (1)

Here, y = 1,...,Y is the year; t = 1,...,T is the day in a sea-
son of length T days; » = 1,..., R denotes a location in a field
with R locations; j,(r) represents the potentially predictable com-
ponent; €,,(r) represents daily weather noise, modelled here as the
residual daily departure of z,,(r) from the seasonal value yi, (). The
set {e,e |t =1,...,T} is assumed to represent a stationary normal
stochastic process in time with mean zero and to be statistically in-
dependent and identically distributed with respect to year y. Note,
in this model ssT-forced intra-seasonal variability is included in the
weather noise component. It is further assumed that the sets {,}
and {e,:} are statistically independent.

As in [7], it is convenient to introduce the convention of using a
circle as a subscript whenever an average is done over that index.
Thus, for example, from Eqn. (1), a seasonal mean anomaly derived
from daily values is written as

yo (1) = py (1) + €4o(r) - (2)

Also, the symbol V will be used to denote the estimated variance
of a single variable or the covariance of two variables. The covari-
ance of the seasonal mean anomaly can be estimated by the sample
covariance,

A

V(ye(ra)s 20(72) = s 3 e (ra) = ()] [1elr2) — ec(r2)]
. 3)

With daily data, an estimate of the covariance of the weather
noise component can be derived from the sample covariance, and
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using the definition of the seasonal mean, as,

A
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This is just the cross periodogram between e, (r1) and e,(r2) at
frequency zero. If we assume that the cross spectrum at zero fre-
quency is smooth and 7T is sufficiently large, then the weather noise
covariance can be approximated at the nearest frequency 27 /7" [1].
Thus,

V(é?yo(h) é?yo(?“z))

YT2 Z R ([Z eyi(r1)e™* T] [Z eye(ra)e™ "/ T]) G)

Of course, €, (r) is not observable and so Eqn. (5) can not be used di-

rectly to estimate V(g,0(71), £40(r2)) . However, because the Fourier
transform of any constant with respect to ¢ at frequency 27/T is
identically zero, it follows, using Eqn. (1), that,

~

V(eyo(r1), €yo (72))

~ YlTQ Z%’% ( nyt<T1>eit2ﬂ/T] [Z :cyt(rz)eitQ”/T]> ., (6)

since fi,(r1) is a constant with respect to ¢. Because the sets {1, }
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and {e,:} are assumed to be statistically independent, we can esti-
mate V(juy(r1), 1y (r2)) by

V(Ny(ﬁ%ﬂy(ﬁ)) = V(xyO(rl)7xy0(T2> - V(gyO(Tl)a 5y0(r2)) - (7)

An empirical orthogonal function (EOF) analysis [2], or eigen-
analysis, can then be applied to each of the spatial covariance ma-
trices given by Equns. (3), (6) and (7) to determine dominant pat-
terns of interannual variability (the eigenvectors of the covariance
matrix), which we shall refer to as the total-EOFs, the weather-EOFs
and the predictable-EOFs, respectively. The corresponding eigenval-
ues then give the amount of variance, in each component, explained
by each pattern. The corresponding principal component (PC), or
daily time series, {py: |,y =1,...,Y,t =1,...,T}, associated with
an EOF {e(r) | r=1,..., R} is then defined as,

R R R

by =Y elr)zy(r) = e(r)uy(r)+ Y e(r)e,(r) = iy +Ey, (8)

r=1 r=1 r=1

where 1, and €, represent the potentially predictable and weather
noise components, respectively, of the PC time series. The potential
predictability of the PC is then defined as V(ﬁy,ﬁy) / V(pyo,pyo),
that is, as the fraction of the interannual variance in the PC series
which is due to the potentially predictable component. This ratio
can be determined from Eqns. (3), (6) and (7), with z,, replaced
by py and ri = ry = r. Here, p,, represents the interannual PC
time series of the corresponding EOF pattern. For convenience, we
shall use the notation total-PC, weather-PC and predictable-PC to
differentiate between the three types of possible PCs.

Rotation [2] is often applied to increase the localization of the
EOF patterns and is often thought to lead to more physically realistic
patterns. In the example below we have chosen to use varimax



3 Data C167

rotation to achieve this, with only significant EOFs (determined from
a scree diagram) used in the rotation. In the case of the potentially
predictable EOFs, we will only rotate those EOFs that, in addition,
have significant potential predictability at a 5% level, which for the
length of our time series, means a potential predictability > 35% .

3 Data

To illustrate the usefulness of the technique, we have applied the
methodology to a dataset containing daily maximum surface tem-
peratures for DJF from 78 high quality Australian stations for the
period 1958-1991. This dataset is a subset of data, gathered and
quality tested by the Australian Bureau of Meteorology, and de-
scribed in [4] and [6]. The location and distribution of these stations
is shown in Figure 1.

The most important external forcing of climate variability on
the inter-annual time-scale is SST forcing, and particularly tropi-
cal sST forcing. An understanding of this type of climate forcing
forms the basis of many seasonal forecast schemes. Typically, such
schemes are based on relationships between the total-PCs of a cli-
mate variable and those of the ssT. However, as we show below, the
total-EOFs may, in many cases, reflect both the predictable and un-
predictable weather components in combination. As a consequence,
the total-PCs may have much lower potential predictability than the
corresponding predictable-PCs. Because the weather component is
inherently unpredictable, one should aim to forecast the predictable
component. Thus, an understanding of the relationship between
this component and SSTs is essential.

To try to quantify this relationship, we have applied a multi-
linear regression analysis between seasonal means of the predictable-
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FIGURE 1: Location and distribution of Australian high quality
surface air temperature stations.
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PCs and PCs of the seasonal means of tropical ssTs. The SSTs used
are taken from the Hadley Centre (UK Meteorological Office) global
ice and sea surface temperature dataset (HADISST1.1) sub-sampled
onto a 4° x 4° latitude/longitude grid. We have used a standard
principal component analysis [2] to generate dominant EOFs of these
SSTs in three regions, covering the tropical Pacific Ocean (pac), the
Atlantic Ocean (atl) and the Indian Ocean/Indonesian archipelago

(ind).

Because we are interested in both simultaneous (0-lag) and one
season lagged (1-lag) relationships with sSTs, the analysis has been
conducted on both DJF and September-October-November (SON)
ssTs. For each season three dominant SST EOFs have been derived
for the Pacific and Indian regions, and two dominant EOFs for the
Atlantic region. The analysis is little changed by including more
SST EOFs. The corresponding SST PCs will play the role, in the
regression analysis, of predictors for the predictable-PCs. The SST
EOFs are shown in Figures 2 and 3.

4 Results

The first four dominant rotated EOFs (REOFs) of the total field, the
predictable and weather components of Australian maximum sur-
face temperatures are shown in Figures 4, 5 and 6, respectively, with
the potential predictability shown in brackets. The contours in this
diagram represent surface temperature anomalies. The total-REOFs
explain 27%, 20%, 16% and 7%, respectively, of the variance in the
total field; the predictable-REOFs explain 24%, 19%, 10% and 6%,
respectively, in the predictable component; the weather-REOFs ex-
plain 23%, 19%, 13% and 8%, respectively, in the weather noise
component. The first 9 unrotated EOFs, explaining 89% and 79% of
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SST EOFs (DJF)
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FIGURE 2: Dominant EOFs of tropical ssTs in the Indian (ind),
Pacific (pac) and Atlantic (atl) Oceans during DJF and SON. The
first index specifies the lag length (0-lag or 1-lag) and the second
index the EOF number (ordered by decreasing explained variance).
Contour interval 0.2.
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SST EOFs (SON)
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FI1GURE 3: As in Figure 2, but for SON.
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the total and weather variance, respectively, were used to derive the
total-REOFs and weather-REOFs. Unrotated predictable-EOFs 1, 2,
3,5,6,8, 9, 11 and 12, which explain 79% of the variance in the
predictable component, all have significant potential predictability
and were used to derive the predictable-REOFs.

Comparing the total-REOFs and the predictable-REOFs, there
are similarities in the spatial patterns with total-REOFs 1, 2, 3,
and 4 having pattern (or anomaly) correlations of —0.91, 0.98, —0.73
and 0.88 with predictable-REOFs 2, 1, 3 and 4, respectively. How-
ever, in each case the corresponding predictable-REOF has greater
potential predictability. This is especially the case with total-EOF 3
and 4. In fact, total-EOF 4 has only a potential predictability of 29%,
which is not statistically significant at the 5% level.

The total-REOFs appear in most cases to be a mixture of the pre-
dictable and weather REOFs. Thus, for example, total-REOF 1, as
well as having a high pattern correlation with predictable-REOF 2,
has pattern correlation of 0.94 with weather-REOF 2. Similarly,
total-REOF 2 and 3 have pattern correlations of 0.71 and 0.65 with
weather-REOFs 3 and 1, respectively. Total-REOF 1 is a particularly
well-known mode of variability and has been associated with the
El Nino-Southern Oscillation (ENSO) phenomenon [3, e.g.] which
is associated with pacific SST variability similar to that depicted in
SST EOF 1 in both DJF and SON (see Figures 2 and 3). However,
our analysis here suggests that it also represents substantial weather
noise and hence a reduced potential predictability compared with
the corresponding predictable-REOF 2. There are also subtle differ-
ences in the structure of the two patterns, with the predictable pat-
tern having maximum weighting centred nearer the east coast and
a secondary maximum over western Australia. In contrast, total-
REOF 1 has only one maximum centred over eastern Australia but
more westward, much like the weather pattern (weather-REOF 2).



4  Results

EOFS AUST. TSMAX DJF (1958-1991)
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F1GURE 4: The first four dominant rotated EOFs of the total compo-
nent, potentially predictable and weather components of Australian
maximum surface air temperature. The potential predictability ap-

pears in brackets.
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EOFS AUST. TSMAX DJF (1958-1991)
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FIGURE 5: As in Figure 4, but for the predictable component.
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EOFS AUST. TSMAX DJF (1958-1991)
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FIGURE 6: As in Figure 4, but for the weather noise component.
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This example illustrates the need to separate the weather variabil-
ity from the total field when studying the predictability of climate
variability.

Finally, we shall consider the role of tropical SSTs in forcing the
predictable patterns. To this end, as discussed in the last section, we
have used multi-linear regression analysis between the predictable-
pPCs and SST PCs. Before the regression analysis is carried out, the
linear trend should be removed from the PC time series. A detrended
potential predictability can then be defined as (original potential
predictable variability-trend variability)/(original total variability).

It is also convenient to introduce the concepts of SST forced vari-
ability and predictability. For our purposes, here, SST forced vari-
ability of a predictable-PC is estimated by regressing the pPC with the
O-season lag and 1-season lag SST PCs, and SST forced predictabil-
ity by regressing the PC with only the 1-season lag SST. Both
are expressed as a percentage of the variance in the predictable-pPc.
Table 1 summarizes the results of the regression analysis.

Predictable-pC 1, which represents maximum temperature vari-
ations over northeastern Australia, has no statistically significant
ssT predictors, even at the 10% level. Thus, its predictability
comes from other sources including slowly varying internal dynam-
ics. Predictable-PC 2, has significant predictors in 1-season lag Pa-
cific mode 1 (pacl.l) and Indian mode 1 (ind1.1), and quite high
ssT forced variability and predictability of 39% (see Table 1). Also,
of the 54% detrended potential predictability, about 72% (39/54) is
due to tropical SST-forcing. Pacific mode 1 is the well-known ENSO
mode of Pacific SST interannual variability, and hence predictable-
PC 2 is also strongly related to ENSO. In addition, the phase of
predictable-PC 2 in DJF is predictable from tropical SSTs in the pre-
ceding season SON.
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Potentially | SST PC % ssT-forced % potential
predictable | predictors variability/ predictability
patterns predictability  (detrended)
PC1 69
0-1 lag
1 lag
PC2 54
0-1 lag | -pacl.1 -indl1.1 39
1lag | -pacl.1 -ind1.1 39
PC3 73
0-1lag | -ind0.1 +indl1.3 39
+ind1.1
1lag | +pacl.1 +indl.1 26
+ind1.8 +ind1.2
PC4 74
0-1 lag | +pacl.2 -ind0.3 29
1lag | pacl.2 19

TABLE 1: sST predictors of the potentially predictable patterns of
inter- annual variability. Predictors significant at 1% are indicated
in italics; predictors significant at 5% in normal type.
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Predictable-pPc 3, which involves an out of phase relationship be-
tween maximum temperature variability over central and southeast
Australia, has sST forced variability (39%) which is dominated by
Indian Ocean interannual variability in 0-season and 1-season lag
mode 1 and 1l-season lag mode 3 (see Table 1). ssT forced pre-
dictability is a little lower at 26%, and also involves a significant
predictor in the 1-season lag ENSO mode. Again, the phase of this
mode is predictable from a knowledge of SON tropical ssTs. Of the
73% potential predictability, about 53% is related to tropical SST
forcing. This is less than for PC 2 and reflects a larger role of low
frequency internal dynamics.

Predictable-pPC 4, involves maximum temperature variations over
the southwest of Australia, and has as its most significant predictor
Pacific SST mode 2 at 1-season lag. This SST mode (see Figure 3)
represents a transition between the warm and cold phases of ENSO.
There is a secondary predictor (at 5% significance level) in 0-season
Indian mode 3, which represents a dipole in SST between the cen-
tral Indian Ocean and Indonesian archipelago. SST forced variability
(Table 1) is still quite large at 29% (39% of the potential predictabil-
ity) and there is some predictability (19%) of the phase from SON
Pacific SSTs.

5 Conclusions

In this paper, we have examined a technique for decomposing the
spatial covariance matrix of a seasonal mean climate variable into a
potentially predictable matrix and unpredictable weather noise com-
ponent. We have applied this technique to an Australian maximum
surface temperature time series and have shown that the method
enables a clearer identification of the potentially predictable char-
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acteristics of a climate variable at inter-annual, or greater, time-
scales. Also, the method provides for a deeper understanding of the
differing roles of the predictable and weather noise components at
these time-scales.
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