
ANZIAM J. 44 (E) ppC202–C228, 2003 C202

Distributed and shared memory
parallelism with a smoothed particle

hydrodynamics code

Richard J. Goozée∗ Peter A. Jacobs†

(Received October 1, 2001)

Abstract

The Smoothed Particle Hydrodynamics (sph) method,
being Lagrangian in nature, provides advantages in mod-
elling flows containing interfaces. The sph method is com-
pletely mesh-free, modelling the fluid as a collection of N par-
ticles which move with the fluid velocity. The continuum
fluid properties at a particular location are interpolated as
weighted sums of the properties of surrounding particles in
a process known as kernel interpolation. In its simplest form
the sph method requires that every particle is used in the
updating of every other particle. This leads to a solution

∗Centre for Hypersonics, The University of Queensland, Australia.
mailto:goozee@mech.uq.edu.au

†Centre for Hypersonics, The University of Queensland, Australia.
mailto:peterj@mech.uq.edu.au

0See http://anziamj.austms.org.au/V44/CTAC2001/Gooz for this article,
c© Austral. Mathematical Soc. 2003. Published 1 April 2003. ISSN 1446-8735

mailto:goozee@mech.uq.edu.au
mailto:peterj@mech.uq.edu.au
http://anziamj.austms.org.au/V44/CTAC2001/Gooz

Contents C203

time that is proportional to N2. Methods using only nearby
particles reduce this requirement significantly; however, the
sph method is still expensive and would benefit from being
implemented on a parallel computer. An example sph code
has been parallelised using mpi, openmp and bsp, and its
performance has been measured on an sph, Origin 2000 and
a Beowulf workstation cluster.

Contents

1 Introduction C204

2 A simple SPH code C207

3 Parallel SPH C211
3.1 Choice of parallel architecture C212

4 Implementation of P-SPH C215
4.1 Shared memory (OpenMP) C216
4.2 Message passing interface (MPI) C217
4.3 Bulk synchronous parallel (BSP) C219

5 Performance results C220

6 Conclusions C224

References C227

1 Introduction C204

1 Introduction

High speed flows are of importance in aircraft flight and for access
to and from space. The Centre for Hypersonics at the University
of Queensland conducts experiments in the hypersonic flow regime
using impulse facilities such as the T4 free-piston shock tunnel and
the X3 superorbital expansion tube. One of our aims is to build
computational models of the flows in these facilities in order to
support the experimental efforts. These supersonic and hypersonic
flows contain strong shocks and expansions and have appreciable
gradients of density through the fluid.

The flows in shock tunnels and expansion tubes involve a number
of moving interfaces between different gases including the contact
surface and the flow around the rupture of the diaphragm. These
interfaces are important as they have a significant effect on the qual-
ity of the test flow and, therefore, on the quality of the experimental
data. The time that tests can be run for in these facilities is typ-
ically very short and depends on how long a homogeneous flow of
test gas can be maintained. A flow simulation method that can
accurately represent these interfaces without introducing significant
amounts of diffusion in doing so would be of benefit.

The Computational Fluid Dynamics (cfd) methods that are
available can be broadly classified as being based on two descrip-
tions of fluid motion: the Eulerian description and the Lagrangian
description. Meshes are typically used to join computational points
for the purpose of interpolating fluid properties. With the Eulerian
description it is the geometry of the flow domain that is discretised
and the fluid flows through the stationary discrete elements. With
the Lagrangian description it is the fluid itself that is divided into
discrete elements which then move with the fluid.

1 Introduction C205

The majority of computational methods that have been used for
detailed modelling of impulse facility flows are Finite Volume meth-
ods [6] based on the Eulerian description; however, the Lagrangian
description could provide advantages in cases where modelling fluid
interfaces is important. Methods that are Lagrangian in nature do
not require high order advection schemes or explicit interface recon-
struction, because the interface is maintained through the movement
of the elements of fluid. These methods, however, suffer problems
caused by distortion of the mesh. It is possible to continually remap
the Lagrangian mesh, but this would introduce numerical diffusion
and, therefore, would reduce the advantage of being able to advect
interfaces with little diffusion.

The problem of mesh distortion can be avoided by not using
meshes at all. What is required for this is a method of interpolating
fluid properties without relying on a mesh joining computational
points. One such method that uses this approach is the Smoothed
Particle Hydrodynamics (sph) method [3, 7]. sph is a meshless,
purely Lagrangian numerical method for the transient solution of
the Euler equations in which continuum fluid is represented by a
collection of fluid particles. The Lagrangian form of the conservation
equations of fluid flow become the equations of motion of these
interpolation points as they move with the flow. In modelling a
fluid interface with sph the sharp interface is smeared out by the
interpolating function. This will reduce detail around the interface;
however, since these smoothed computational elements move with
the interface, an improved representation may still be obtained.

The approach we take to the modelling of interfaces in com-
plicated flows requires the use of large three dimensional simula-
tions; this means that the performance of the method is important.
The basic solution procedure using sph is, in essence, proportional
to N2, which results from the case where each of the N particles

1 Introduction C206

in the simulation must calculate its properties using information
from every other particle in the simulation. This degree of scaling
means that large simulations would be prohibitively expensive and
three dimensional simulations with sufficient resolution would be
infeasible. As an example, a two dimensional simulation in which
the initial arrangement of 100 × 100 particles, taking 15 minutes
to solve, would take approximately 100 days to solve for a three
dimensional arrangement of 100 × 100 × 100 particles. There are
techniques specific to sph to reduce this requirement without inval-
idating the solution. One of the most important of these involves
dividing the solution domain into regions that can then be used to
identify neighbouring particles to be included in the computation;
only those particles nearby have a significant effect on a particle
behaviour.

The other important method used for implementing larger sph
simulations is parallelisation. In a parallel sph simulation the work
of interpolating the flow field and updating the properties of parti-
cles is divided amongst several processing elements. In the present
study, this was done with an example sph code using openmp, mpi
and bsp. The parallel code, developed with the three methods, was
used in solutions of size ranging from 6,250 to 200,000 particles, and
each was run with one, two, four and eight processors. The perfor-
mance was measured and compared to the sequential performance
of the code. These results are used to investigate general trends in
the code’s performance, both as the size of the simulations is scaled,
and as the number of processors is scaled.

2 A simple SPH code C207

2 A simple SPH code

An sph simulation is started by placing the particles in the domain
such that the density of the fluid is represented by the relative den-
sity of the particle positions. To interpolate the information that
we have at particle positions a technique known as kernel interpo-
lation is used [13]. To do this the information stored at a point
in space is numerically distributed over the surrounding area by a
kernel function, W (r). The degree of smoothing is defined by a pa-
rameter known as the smoothing length and can be either constant
for all particles or vary depending on the local density.

The state vector of particle properties is {r,v, e}, where r is the
position vector, v is the velocity vector, and e is the specific internal
energy. The time derivatives of the state vector are {v, dv/dt, de/dt} .

Equation (1) shows the summation used for some fluid property,
A, being interpolated at the sample point r using the kernel smooth-
ing function W (r− rb, h) . The contributions to the properties from
all particles b in the domain are summed to produce

As(r) =
∑

b

Ab
mb

ρb

W (r− rb, h) (1)

where mb is the mass of fluid assigned to the particle b and ρb is
the density of the particle b. An important aspect of kernel interpo-
lation is that, with the right choice of kernel, the gradient of fluid
properties is interpolated directly using the gradient of the kernel.
With the Gaussian kernel this gradient is known analytically and,
therefore, can be used to interpolate these gradients in the same
way that fluid properties are calculated. In the case of the Euler
equations the gradient of pressure is required:

Dv

Dt
=
−1

ρ
∇p (2)

2 A simple SPH code C208

where v is the velocity vector of the fluid, ρ is the density of the fluid
and p is the pressure of the fluid. This equation is solved using the
gradient of the kernel interpolant, resulting in Equation (3). This
equation determines the acceleration experienced by the particle us-
ing the pressure and density properties of the surrounding particles,
denoted by b. The symmetric nature of this equation ensures that
particle interactions are equal and opposite [8].

dva

dt
= −

∑
b

mb

(
pa

ρ2
a

+
pb

ρ2
b

)
∇aW (ra − rb, h) . (3)

The rate of change of specific internal energy is calculated using:

dea

dt
=

1

2

∑
b

mb

(
pa

ρ2
a

+
pb

ρ2
b

)
va · ∇aW (ra − rb, h) . (4)

Dissipation in the form of two types of artificial viscous pressures are
usually added to Equations (3) and (4): a Von Neumann-Richtmyer
artificial viscosity and a bulk viscosity. Pseudo code for the sph
technique is shown in Figure 1.

sph can be computationally expensive; however, there are tech-
niques for increasing its efficiency and, therefore, the size of simula-
tions that can be run in practice. These include the use of efficiently
structured code and compiler optimisations, particle sorting meth-
ods, such as cells and hierarchical trees, and overall parallelisation
of the algorithm.

On modern computers, effective use of data pipelining, mem-
ory hierarchy and, with some processors, superscalar operation give
significant improvements in performance. Most systems provide a
“fast” compiler tag (such as -Ofast=ip27 on the sgi Origin 2000
systems) that specify all optimisations to the compiler, which can
result in performance improvements as large as 20%. These aspects

2 A simple SPH code C209

1. assign particles to flow domain according to initial
density

2. assign initial properties to particles

3. repeat until solution time has been reached

(a) calculate densities at particle positions

(b) calculate particle pressures and local sound
speeds

(c) calculate particle accelerations

(d) calculate rate of change of internal energy

(e) integrate particle properties forward through
time step

Figure 1: Pseudo code for the sph method

of performance are common to all areas of high performance com-
puting.

There are optimisations specific to the sph method that sig-
nificantly impact performance. Polynomials are often used for the
interpolating kernels instead of Gaussian functions as they are less
costly to evaluate. This significantly improves performance as the
kernel function must be calculated for every particle’s contribution
to the summations used. Forces between particles are equal and
opposite and so the number of interactions actually calculated in
the solution are reduced by a factor of two. This optimisation is
easily realised with a sequential solution, but care must be taken
when implementing this in parallel.

Particles that are a long distance from the particle being updated
provide a negligible contribution to the summation. Special inter-
polating kernels recognise this and provide compact support [2]:

2 A simple SPH code C210

m

n+1nn-1

m+1

m-1

Figure 2: Cell sorting used for finding neighbouring particles to
those in cell (m, n) with constant smoothing length

outside of a certain radius the contribution is zero. Thus only
nearby particles, usually within a radius of two times the smoothing
length, need to be considered. Particles are then sorted in order to
quickly find their neighbours. For simulations in which the smooth-
ing length does not vary, particles are assigned to fixed-size cells.
For a specified location, the nearest cells and, therefore, nearest
particles are easily found. Figure 2 shows a particle, marked by a
cross, and the circular region in which other particles will have a
significant contribution. The cell (m, n) in which the particle lies is
shaded and the surrounding cells that are included in the calculation
by the sorting technique are lightly shaded.

3 Parallel SPH C211

Array Update

p1 p2 p3p0

ar
ra

y
 o

f
p
ar

ti
cl

es

Computation

p1 p2 p3p0

ar
ra

y
 o

f
p
ar

ti
cl

es

Figure 3: Simple parallelisation of an sph code with four processes

3 Parallel SPH

One of the most important methods for running very large simu-
lations is the use of multiple processors to simultaneously update
particle information. For this to be feasible the majority of the com-
putational work needs to be processed independently. With most
algorithms, however, sequential regions will remain and some ex-
tra work will also be incurred by running an algorithm in parallel.
The majority of the work in the sph method can be parallelised
since all particle interactions are independent. Almost all of the
computational effort used in the sph method is in calculating these
interactions. The sequential work that remains includes stacking
new particles in the array when they are created at inflow bound-
aries.

Figure 3 shows the simple parallel model for the sph method.
A simulation using four processes is shown. Each process stores
its own copy of the array of particles; this copy may, or may not,

3 Parallel SPH C212

be accessible by the other processors. During a time step, each
process updates the properties of the particles assigned to it, shown
as shaded. At the end of a time step, each process has updated
information for its section of the array and out of date information
for the other sections. Reconciling these differences will require
some data transfer. This data transfer is shown in Figure 3 for the
particles associated with process zero. It is a feature of this model
that processes can be reading from any particle in the array meaning
that the entire array must be updated for each process.

3.1 Choice of parallel architecture

The term supercomputer is used to refer to the most powerful com-
puters available at the time. At present this refers exclusively to
parallel computers, as shown in Figure 4. In 1995, single processor
and Single Instruction, Multiple Data (simd), or vector, computers
still featured in the top 500 list; Symmetric Multi-Processor (smp),
or shared memory, computers were firmly established and the new
class of Massively Parallel Processor (mpp), or distributed mem-
ory, computers were emerging. In 2001 the choice of supercomputer
would be broadly stated as being a choice between a shared mem-
ory computer and a distributed memory computer. We limit our
discussion to these two classifications.

In distributed memory computers, all processors store data in
their own memory space. This information is not directly acces-
sible to other processes and must be shared by passing messages
containing required information. In contrast, shared memory com-
puters use one memory space that is accessible to all processors.
This single memory space simplifies parallelisation by removing the
constraint of having to explicitly update data between processes
through communication. The shared memory model is limited in

3 Parallel SPH C213

0

50

100

150

200

250

300

350

400

450

500

1993 1994 1995 1996 1997 1998 1999 2000

N
u

m
b

e
r

o
f

S
y
s
te

m
s

Time

Workstation Clusters

MPP

SMP Clusters

SMP

SIMD

Single Processor

Figure 4: The list of the Top 500 supercomputers in the world for
the last ten years [10]

3 Parallel SPH C214

sh
ar

ed
m

em
o

ry
sp

ac
e

Read

process 0

Write

Figure 5: Shared Memory Parallelism for process 0

scalability by the need for all processors to practically be able to
access the one memory.

Shared memory parallelism with the sph method only differs
from the simple domain parallel method described in Figure 3 in
the way that data is stored and shared. Since all processors access
the same global memory space there is only one copy of the particle
array; the simple model had a copy of the array for each proces-
sor. The basic shared memory model is shown in Figure 5 where
process 0 is reading the properties of particles from anywhere in
the data structure and writing updated results to the section of the
global array assigned to it to be updated. The rest of the array is
updated by the other processes.

In the distributed memory model each process stores data in its
own memory space making it more like the simple parallel model
described in Figure 3 than the shared memory model. If processors
require updated data that is being stored by another process then
this information must be transferred to it by message passing. With
message passing, discrete blocks of information are requested and
then sent and received explicitly by the two participating processors.

4 Implementation of P-SPH C215

All processors must receive all updated particle information be-
fore the start of a new time step since, as with the simple model,
updating a particle may require information from any other particle.
This results in a large amount of data storage and a large amount
of communication that must be performed keeping this data up to
date. This method is, however, relatively simple to implement and
analyse.

A more advanced method of implementing distributed memory
parallelism involves dividing the particles into blocks according to
their geometric position rather than their position in the array; this
is known as multi-block parallelisation. This has the potential to
greatly reduce the amount of communication required as only block
boundaries need to be transferred. There are significant complica-
tions with this method, however, such as the management of parti-
cles rapidly moving between the stationary geometric blocks. This
method is not implemented in this paper, but will be investigated
further for large simulation sizes.

4 Implementation of P-SPH

The Parallel-sph code (p-sph) was implemented using three meth-
ods: openmp uses the shared memory model and was used on the
sgi Origin 2000; the Message Passing Interface (mpi) uses the dis-
tributed memory model with message passing and was used on both
the Origin 2000 and the Beowulf cluster; and the Bulk Synchronous
Parallel (bsp) model which, like mpi, is based on message passing
but follows a simpler structure to the parallelism based on super-
steps.

4 Implementation of P-SPH C216

4.1 Shared memory (OpenMP)

The openmp version of the p-sph is based on the standard shared
memory model of parallelism. The updated data is transferred using
memory to memory copying via array access. openmp is a specifica-
tion for a set of compiler directives, library routines and environment
variables that can be used to specify shared memory parallelism in
Fortran and C programs. Standardisation efforts in shared memory
parallel programming are focusing on the development of openmp
which allows the parallelisation of general regions of code, the nest-
ing of parallel regions inside one another and much of the control
over the details of the parallel execution.

As the sgi-openmp library used on the Origin 2000 is tuned to
this system good performance would be expected. On the computer,
underlying hardware and system software takes care of any data
transfer between threads giving the impression, to the programmer,
that they are using a single memory space. At present openmp does
not run on distributed memory computers. Such an implementation
would perhaps have to be built on top of mpi and would, therefore,
incur significant performance penalties.

The performance of openmp will be used as the benchmark for
parallel performance of p-sph as it is aimed at being easy to imple-
ment and still perform well on the Origin 2000. A major advantage
of mpi and bsp over openmp is that they run with distributed mem-
ory as well as shared memory computers.

The structure of the openmp version of p-sph is the same as
that for the sequential version. The difference lies in that when a
particular task is performed, such as the calculation of density using
kernel interpolation, multiple threads are spawned which all update
information for particles assigned to them in the shared memory
space. The pseudo-code for the openmp version is the same as that

4 Implementation of P-SPH C217

for the sequential version, shown in Figure 1. For steps 4 to 7 the
compiler arranges multiple threads to be used in the calculations.

4.2 Message passing interface (MPI)

The mpi version of the code used in the performance investigation
in Section 5 is based on the simple model of distributed memory
parallelism.

The Message Passing Interface (mpi) has become the standard
specification for communication protocols in Multiple Instruction,
Multiple Data (mimd), distributed memory parallel computers [1]
with almost all modern supercomputers having mpi libraries avail-
able. Also, a lot of the development of mpi has been with work-
station clusters in mind and with current trends in supercomputing
mpi based applications should be easy to port to new supercomputer
facilities.

The basis of message passing is that all cpus possess a local
memory and are able to communicate with the other processes by
sending and receiving messages. It is a defining feature of message
passing that the sending and receiving of messages are separate op-
erations that must be performed by each process [5]. The complexity
of mpi can range from simple send and receive commands to col-
lective communication procedures involving structures of data. The
mpi libraries used in this paper complied with version 1.2 of the
standard. Three of the most widely used libraries, lam-mpi [11],
mpich [4] and mpi/pro [9] were used in the tests on the Beowulf
cluster, and the sgi Message Passing Toolkit (mpt) was used on
the Origin 2000. The mpt is a library based on the standard that
is specially tuned for the Origin 2000 architecture.

The pseudo code for the mpi version of p-sph is shown in Fig-

4 Implementation of P-SPH C218

1. assign particles to flow domain according to initial
density

2. assign initial properties to particles

3. repeat until solution time has been reached

(a) calculate densities at particle positions

(b) calculate particle pressures and local sound
speeds

(c) blocking group communication to update par-
ticle array

(d) calculate particle accelerations

(e) calculate rate of change of internal energy

(f) integrate particle properties forward through
time step

(g) blocking group communication to update par-
ticle array

Figure 6: Pseudo code for the mpi version of p-sph

4 Implementation of P-SPH C219

ure 6. The structure of the pseudo code is not changed from the
sequential version, however, the blocking group communications at
steps 3c and 3g are added. The densities, pressures and sound
speeds calculated at 3a and 3b are required by the calculations at 3d
and 3e and so communication is required. When the particles are
integrated at 3f this information must be communicated to the other
processes before the next time step can commence. With the sim-
ple parallel model used, particle information may be required from
any position in the particle array and so each process must update
the information in every other processors array. The broadcast per-
formed by each process is a blocking communication routine which
means that no processes are allowed to proceed past this routine
until it is complete. This eliminates the need for an explicit barrier
synchronisation at these points.

4.3 Bulk synchronous parallel (BSP)

The Bulk Synchronous Parallel (bsp) version of the p-sph code
is based on the simple model of distributed memory parallelism,
much the same as the mpi version. The bsp model of parallel com-
puting was first proposed in 1990 by Valiant [12]. Since then the
model has been implemented by a research group at Oxford Uni-
versity producing bsplib, which is a library of bsp communication
and synchronisation primitives. These primitives are callable from
both Fortran and C, and the library includes performance analysis,
benchmarking and debugging tools. The aim of bsp is to produce
a parallel library that is architecture independent, provides scalable
parallel performance and yet is conceptually simple. These objec-
tives have largely been achieved in bsplib, however, results were only
obtained for the Origin 2000 since the installation of the library on
the Beowulf cluster failed.

5 Performance results C220

Within a superstep, each process performs its independent com-
putations, followed by a global computation phase and then a bar-
rier synchronisation. In this way bsp imposes a simple underlying
structure on the parallel code. The superstep-based structure of bsp
corresponds well with the time step structure of explicit cfd codes.
For this reason, the mpi version of p-sph was structured in the
same manner as the bsp code. The pseudo code with bsp is, there-
fore, the same as the mpi version shown in Figure 6 except that the
group communication routines in bsp are non-blocking and so ex-
plicit barrier synchronisations are added. This structure is the basis
of the bsp method, with a region of general computation followed
by group communication and a barrier synchronisation forming a
super step. The bsp version follows the simple parallel model, as
with mpi, therefore, the whole particle array must be updated on
each process.

5 Performance results

In order to investigate the performance of the p-sph code in parallel,
simulations of around one hundred time steps in length were run
for sizes between 6,250 particles and 200,000 particles. Simulations
were run sequentially and with one, two, four and eight processors
in parallel using openmp, mpi and bsp. Two computers were used
in the tests, a shared memory computer: an sgi Origin 2000 with
64 mips R10000 Processors, and a distributed memory computer: a
Beowulf class workstation cluster with 33 dual processor Pentium III
800MHz. In the tests openmp was used on the Origin 2000, with the
sgi openmp libraries, mpi was used on both the Origin 2000, with
the sgi Message Passing Toolkit (mpt) and the Beowulf cluster,
with lam-mpi, and bsp was used on the Origin 2000, with the
Oxford University developed bsp library.

5 Performance results C221

Table 1: Run times of p-sph using openmp on the Origin 2000
(in seconds)

Number of processors used by p-sph
N Sequential 1 2 4 8

6250 6.58 6.89 4.62 3.04 2.44
12500 23.26 23.83 14.01 9.73 6.44
25000 78.37 79.10 45.20 27.30 18.22
50000 346.68 337.59 198.91 107.02 60.34

100000 1352.76 1301.76 717.43 384.93 232.81
200000 4805.65 4963.13 2672.26 1453.14 851.47

Table 1 shows the run time for the p-sph code using openmp
on the Origin 2000 as well as the sequential performance on an
R10000 processor. This table shows how the run time is reduced
by running the code in parallel as well as the scaling of the code
run time with the number of particles. There is a certain amount of
variation in the timing data due to the use of a shared system and
network contention; however, this should not affect the trends used
to analyse the scaling of the code.

The parallel efficiency is the ratio of the parallel run time to
the sequential run time divided by the number of processors. Par-
allel efficiency shows the degree to which the incurred overheads,
relative to the amount of parallel computation, have affected the
performance. A code run in parallel on one processor will have an
efficiency less than one since unnecessary work will be performed by
the parallel library.

The openmp based code performed well for the range of simula-
tion sizes. The efficiency, although low for the smallest simulations,
increased as the number of particles in the simulation was increased.

5 Performance results C222

0

0.2

0.4

0.6

0.8

1

10000 100000

P
a
ra

lle
l
E

ff
ic

ie
n
c
y

Simulation Size (Particles)

MPI 1 Processor
MPI 2 Processor
MPI 4 Processor
MPI 8 Processor

0

0.2

0.4

0.6

0.8

1

10000 100000

P
a
ra

lle
l
E

ff
ic

ie
n
c
y

Simulation Size (Particles)

OpenMP 1 Processor
OpenMP 2 Processor
OpenMP 4 Processor
OpenMP 8 Processor

Figure 7: Effect of problem size N on parallel efficiency of p-sph
using mpi and openmp on the Origin 2000

5 Performance results C223

On four processors, the speed-up was still well below the ideal of 4.0.
However, for the code with little parallel optimization, and small N ,
a speed-up of 3.11 is a satisfactory outcome. The openmp code is
useful as a baseline for what could be achieved with little coding
effort using the shared memory model. The efficiency of openmp
on the Origin 2000 for the range of simulation sizes and processor
numbers is shown in Figure 7.

Message passing is inefficient with the small grained parallelism
that results with small numbers of particles in simulations. Sending
small messages through the interconnection network increases the
effect of the system latency; latency is independent of message size
and, therefore, has a lesser effect on the total send time for larger
messages. For the larger simulations the run times scale along side
the sequential run times. The parallel efficiencies for the mpi simu-
lations are also shown in Figure 7. The efficiency improves greatly
as the number of particles is increased as would be expected with
the use of message passing.

The parallel performance of the code using openmp, mpi and bsp
on the Origin 2000 can be compared directly for the ranges of simu-
lation size using four processors. mpi and bsp, both being based on
message passing, perform roughly the same over the range of simula-
tion sizes. The performance of openmp is good for the whole range
of sizes. The Origin 2000 was specially designed to take advantage
of openmp code and this level of performance would be expected.
The message passing libraries perform badly for the smaller simu-
lation sizes mainly due to communication latencies associated with
communication with small message sizes; openmp does not suffer
from this problem. As the simulation size is increased the perfor-
mance of the message passing libraries improves dramatically until
they are equal with that of openmp.

The same general trends in scaling of efficiency are evident in

6 Conclusions C224

the mpi and the openmp based codes, however, message passing is
inefficient for small simulations and its efficiency increases at a rapid
rate and reaches that of openmp for the largest simulation size.

Varying the number of processors at the largest simulation size,
of 200,000 particles, shows the decrease in parallel efficiency with
increased number of processors, see Figure 8. mpi, with its message
passing approach is well suited to the coarse grained parallelism of
this large simulation size and performs the well through the range
of processor numbers. openmp improves relative to message pass-
ing with an increased number of processors. As discussed earlier,
openmp is better at the small simulation sizes.

The performance of mpi on the Beowulf cluster could not be
examined properly due to faults in the Redhat Linux 7.0 operating
system libraries on the system used and the use of a system shared
with other users. Increasing the number of processors above two
resulted in utilisation of the processors around 10% and so the per-
formance results did not reflect the true parallel performance of the
code on this system. For up to two processors, as seen in Figure 9,
the same general trend is evident as that on the Origin 2000, as well
as the relative speeds of the systems.

6 Conclusions

Where shared memory is available openmp will give good perfor-
mance over the range of simulation sizes with moderate develop-
ment. Message passing, using mpi and bsp, may require signifi-
cantly more development to obtain good performance and is not
suited to small simulation sizes. Using message passing does, how-
ever, allow distributed memory computers to be used. These com-
puters scale more effectively and are usually cheaper than shared

6 Conclusions C225

0

0.2

0.4

0.6

0.8

1

10000 100000

P
a
ra

lle
l
E

ff
ic

ie
n
c
y

Simulation Size (Particles)

OpenMP 4 Processors
MPI 4 Processors
BSP 4 Processors

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

P
a

ra
lle

l
E

ff
ic

ie
n

c
y

Number of Processors

MPI
OpenMP

BSP

Figure 8: Parallel efficiency of mpi, openmp and bsp on the
Origin 2000 for varying problem size (left) and processor numbers
(right)

6 Conclusions C226

100

1000

10000

0 1 2 3 4 5 6 7 8 9

S
o
lu

ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

Number of Processors

SGI Origin 2000
Pentium III Cluster

Figure 9: Comparison of the Performance of mpi on the Ori-
gin 2000 and a Beowulf Cluster

References C227

memory computers and, as a result, make up the majority of the
world’s 500 most powerful computers.

As expected, the efficiency increased with the simulation size, for
a given number of processors, and the efficiency decreased with the
number of processors, for a given simulation size. Parallel overheads
were primarily due to communication and synchronization. The
communication overhead can be broken down into the latency due
to initiating the transfer and the actual communication time for
the data. For smaller simulations, the system latency has a more
significant effect on the communication time for message passing, as
with mpi and bsp. Increasing the number of processors, although
allowing access to more computing power, increases the overheads
due to synchronising the processors, reducing the parallel efficiency.

References

[1] Touati Sid Ahmed Ali. MPI: A message passing interface.
MPI Forum, pages 1–5, 1993. C217

[2] David A. Fulk and Dennis W. Quinn. An analysis of 1-D
smoothed particle hydrodynamics kernels. Journal of
Computational Physics, 126:165–180, 1996. C209

[3] R.A. Gingold and J.J Monaghan. Smoothed particle
hydrodynamics: Theory and application to non-spherical
stars. Mon. Not. R. Astr. Soc., 181:375–389, 1977. C205

[4] William Gropp and Ewing Lusk. Installation guide to
MPICH, a portable implementation of MPI. version 1.2.0.
ANL/MCS-TM-ANL-96/5 Rev B, pages 1–63, 1996. C217

References C228

[5] William Gropp, Ewing Lusk, and Anthony Skjellum. Using
MPI: Portable Parallel Programming with the Message
Passing Interface. The MIT Press, Cambridge,
Massachusetts, 1994. C217

[6] P. A. Jacobs. Numerical simulation of transient hypervelocity
flow in an expansion tube. Computers Fluids, 23(1):77–101,
1994. C205

[7] L.B. Lucy. A numerical approach to the testing of the fission
hypothesis. The Astronomical Journal, 82(12):1013–1024,
1977. C205

[8] J. J. Monaghan. An introduction to SPH. Computers in
Physics Communications, 48:89–96, 1988. C208

[9] Inc. MPI Software Technology. MPI/Pro Webpage.
http://www.mpi-softtech.com/, Accessed December 2000.
C217

[10] University of Mannheim and University of Tennessee. Top 500
Supercomputer Sites. http://www.top500.org/, 2000. C213

[11] University of Notre Dame. LAM/MPI Parallel Computing.
University of Notre Dame, 2000. http://www.lam-mpi.org/.
C217

[12] L. G. Valiant. A bridging model for parallel computation.
Comm. of ACM, 33(8):103–111, 1990. C219

[13] M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman
and Hall, London, 1995. C207

http://www.mpi-softtech.com/
http://www.top500.org/
http://www.lam-mpi.org/

	Introduction
	A simple SPH code
	Parallel SPH
	Choice of parallel architecture

	Implementation of P-SPH
	Shared memory (OpenMP)
	Message passing interface (MPI)
	Bulk synchronous parallel (BSP)

	Performance results
	Conclusions
	References

