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An iterative domain decomposition algorithm
for a nonlinear convection-diffusion problem
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Abstract

This article describes an iterative domain decomposition algorithm
for solving nonlinear singularly perturbed convection-diffusion prob-
lems where convection is dominant. The domain decomposition algo-
rithm consists of the two iterative processes: outer iterations and inner
iterations. One outer iterative step represents computing nonlinear
difference subproblems on overlapping subdomains in serial according
to upwind error propagation (the multiplicative Schwarz method). At
the level of the inner iterations, each nonlinear subproblem is solved
by the monotone additive Schwarz algorithm. The advantages of the
algorithm are that the algorithm solves only linear discrete systems
at each iterative step, converges monotonically to the exact solution
of the system, and is potentially parallelisable. Results of numerical
experiments are presented.
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for this article, c© Austral. Mathematical Soc. 2007. Published October 18, 2007. ISSN
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1 Introduction

We are interested in iterative domain decomposition methods for solving the
semilinear convection-diffusion problem with regular boundary layers:

−ε(uxx + uyy) + b(x, y)ux + f(x, y, u) = 0 , (x, y) ∈ ω ;

u = g on ∂ω ; b ≥ β > 0 on ω̄ ,

fu ≥ c∗ > 0 , (x, y, u) ∈ ω̄ × (−∞ ,∞) , (fu ≡ ∂f/∂u) , (1)

where ω̄ = ω ∪ ∂ω , ω = {(x, y) : 0 < x < 1 and 0 < y < 1} , ∂ω is the
boundary of ω̄, ε is a small positive parameter and β and c∗ are constants.

For ε � 1 , problem (1) is singularly perturbed and characterized by an
elliptic boundary layer of width O(ε| ln ε|) at x = 1 and by parabolic bound-
ary layers of width O(

√
ε| ln ε|) at y = 0 and y = 1 . The parabolic layers

are present because part of the boundary of the domain is a characteristic of
the reduced differential equation.
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Problem (1) occurs in such fields as fluid dynamics; for example, it de-
scribes the magnetohydrodynamic flow in a rectangular duct under a uniform
magnetic field at high Hartmann number [7].

In the past ten years, with the increase in high performance parallel
computers, many are interested in domain decomposition techniques to help
reduce processor time and computer memory required for solving problems.
Domain decomposition techniques involve splitting the domain into subprob-
lems and solving each problem on its own processor. Recently, much interest
has been shown in the Schwarz-type iterative domain decomposition algo-
rithms [4, 6].

We consider the two level Schwarz domain decomposition algorithm by
Garbey et al. [5]. This algorithm consists of the two iterative processes:
outer iterations and inner iterations. One outer iterative step represents
computing M subproblems on overlapping vertical subdomains (strips) ω̄m,
m = 1, . . . ,M , serially, starting from subdomain ω̄1 and finishing off on ω̄M

(according to upwind error propagation). Thus, the multiplicative Schwarz
method is the outer part of the algorithm. At the level of the inner iter-
ations, each vertical strip ω̄m is split into nonoverlapping boxes (horizontal
strips) with interface γ. Small interfacial subdomains are introduced near the
interface γ, and approximate boundary values computed on γ are used for
solving problems on the nonoverlapping box-subdomains. Thus, the additive
Schwarz method is the inner part of the algorithm.

The proposed algorithm combines the two level Schwarz domain decompo-
sition algorithm with the method of upper and lower solutions. The method
of upper and lower solutions is a monotone iterative method which also pro-
vides a method of constructing initial solutions without prior knowledge of
the actual solution, as is often required in Newton’s method. The mono-
tonicity condition guarantees that systems of algebraic equations based on
such methods are well posed. The advantages of the algorithm are that the
algorithm solves only linear discrete systems at each iterative step, converges
monotonically to the exact solution of the system, and is parallelisable.
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2 Nonlinear difference scheme

On ω̄ introduce a nonuniform mesh ω̄h = ω̄hx × ω̄hy :

ω̄hx = {xi , 0 ≤ i ≤ Nx ; x0 = 0 , xNx = 1 ; hxi = xi+1 − xi} ,
ω̄hy = {yj , 0 ≤ j ≤ Ny ; y0 = 0 , yNy = 1 ; hyj = yj+1 − yj} .

For approximation of (1), we use the upwind difference scheme

LhU(P ) + f(P, U) = 0 , P = (xi, yj) ∈ ωh , U = g on ∂ωh , (2)

where LhU(P ) is defined by

LhU = −ε
(
D2

x +D2
y

)
U + bD−

x U .

D2
xU(P ) , D2

yU(P ) and D−
x U(P ) are the central difference and backward dif-

ference approximations to the second and first derivatives, respectively:

D2
xUij = [(Ui+1,j − Uij) /hxi − (Uij − Ui−1,j) /hxi−1] /~xi ,

D2
yUij = [(Ui,j+1 − Uij) /hyj − (Uij − Ui,j−1) /hyj−1] /~yj ,

D−
x Uij = (Uij − Ui−1,j) /hxi−1 ,

~xi = (hxi−1 + hxi) /2 , ~yj = (hyj−1 + hyj) /2 , (3)

where Uij = U(xi, yj) .

3 Domain decomposition algorithm

3.1 The outer iterates

We introduce the set of the overlapping vertical strips ω̄m, m = 1, . . . ,M ,
with the boundaries (a fragment of the domain decomposition is illustrated
on Figure 1)

∂ωm = γl
m ∪ γr

m ∪ γ0
m ,
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Figure 1: Fragment of the domain decomposition with overlapping subdo-
mains ωm−1, ωm, ωm+1 and overlaps θm−1, θm.

where γl
m and γr

m are the left and right boundaries of ω̄m, respectively, and
γ0

m belongs to the boundary of ω̄. Thus,

ω̄m ∩ ω̄m+1 = θ̄m , m = 1, . . . ,M − 1 ,

where θ̄m is the overlap between two subdomains ω̄m and ω̄m+1. On the
subdomains, introduce nonuniform meshes ω̄h

m = ω̄m ∩ ω̄h , m = 1, . . . ,M .

At the level of the outer iterates of the algorithm from Garbey et al. [5],
one complete iterative step includes solving a sequence of M problems on
subdomains ω̄h

m, m = 1, . . . ,M , in serial.

1. Initialization: On the whole mesh ω̄h, choose an initial function V (0)(P ),
P ∈ ω̄h , satisfying the boundary condition V (0)(P ) = g(P ) on ∂ωh.

2. On subdomains ω̄h
m, m = 1, . . . ,M , compute in serial the mesh func-

tions V
(n)
m (P ), m = 1, . . . ,M , satisfying the difference schemes

LhV (n)
m (P ) + f(P, V (n)

m ) = 0 , P ∈ ωh
m , (4)
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with the boundary conditions V
(n)
m (γhl

m) = V
(n)
m−1(γhl

m) , V
(n)
m (γhr

m ) =

V (n−1)(γhr
m ) and V

(n)
m (γh0

m ) = g(γh0
m ) , where

γhl
m = γl

m ∩ ω̄h
m , γhr

m = γr
m ∩ ω̄h

m , γh0
m = γ0

m ∩ ω̄h
m .

For computing the problem on subdomain ω̄h
m, m > 1 , the Dirichlet

boundary condition on the left boundary is updated using the solution
of the problem on subdomain ω̄h

m−1 (previous substep of the outer it-
erative step). Its right boundary is that found from the previous outer
iteration V (n−1)(P ) and the top and bottom boundaries are equal to
the original boundary condition g(P ).

3. Compute the solution V (n)(P ), P ∈ ω̄h , by piecing together the solu-
tions on the subdomains

V (n)(P ) =

{
V

(n)
m (P ) , P ∈ ω̄h

m \ θh
m , m = 1, . . . ,M − 1 ;

V
(n)
M (P ) , P ∈ ω̄h

M .
(5)

On ω̄h
m \ θh

m , we set V (n) equal to the solution V
(n)
m , and overlap θ̄h

m is
included in ω̄h

m+1.

4. Stopping criterion: If a prescribed accuracy is reached, then stop; oth-
erwise go to Step 2.

3.2 The inner iterates

We assume that f from (1) satisfies the two-sided constraint

0 < c∗ ≤ fu ≤ c∗ , c∗, c
∗ = constant.

For solving the nonlinear problems (4), we use the inner iterates based
on the nonoverlapping box-subdomains by Boglaev [2]. We decompose each
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Figure 2: Fragment of the box-domain decomposition.

subdomain ω̄m into Sm nonoverlapping box-subdomains ωms, s = 1, . . . , Sm ,
with boundaries

∂ωms = γl
ms ∪ γr

ms ∪ γb
m ∪ γt

ms ,

where γl
ms, γ

r
ms, γ

b
m and γt

ms are the left, right, bottom and top boundaries
of ω̄ms. Additionally, we introduce (Sm − 1) interfacial subdomains ϑms,
s = 1, . . . , Sm − 1 , (horizontal strips) with the boundaries

∂ϑms = ρl
ms ∪ ρr

ms ∪ ρb
ms ∪ ρt

ms ,

where ρl
ms, ρ

r
ms, ρ

b
ms and ρt

ms are the left, right, bottom and top boundaries
of ϑ̄ms. Figure 2 illustrates a fragment of the box-domain decomposition.

On each iterative step of the inner iterates, we first solve problems on the
nonoverlapping subdomains ω̄h

ms = ω̄ms ∩ ω̄h
m , s = 1, . . . , Sm , with Dirichlet

boundary conditions passed from the previous iterate. Then Dirichlet data
are passed from these subdomains to the horizontal interfacial subdomains
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ϑ̄h
ms = ϑ̄ms ∩ ω̄h

m , s = 1, . . . , Sm − 1 . Problems on the horizontal interfacial
subdomains are computed. Finally, we piece together the solutions on the
subdomains.

1. Initialization: On ω̄h
m, choose an initial mesh function V

(n,0)
m (P ), P ∈

ω̄h
m , satisfying the boundary conditions in (4).

2. On the box-subdomains ω̄h
ms, s = 1, . . . , Sm , compute the mesh func-

tions Z
(n,k)
ms (P ) (here the index k stands for a number of the inner

iterative steps) satisfying the difference problems

(Lh + c∗)Z(n,k)
ms (P ) = −Rh(P, V (n,k−1)

m ) , P ∈ ωh
ms , (6)

with Z
(n,k)
ms (∂ωh

ms) = 0 , where Rh(P, V
(n,k−1)
m ) is the residual of the

difference scheme (4) on V
(n,k−1)
m , that is,

Rh(P, V (n,k−1)
m ) = LhV (n,k−1)

m (P ) + f(P, V (n,k−1)
m ) .

3. On the horizontal interfacial subdomains ϑ̄h
ms, s = 1, . . . , Sm− 1 , com-

pute the difference problems

(Lh + c∗)Z̃(n,k)
ms (P ) = −Rh(P, V (n,k−1)

m ) , P ∈ ϑh
ms , (7)

with Z̃
(n,k)
ms (ρhl

ms) = Z̃
(n,k)
ms (ρhr

ms) = 0 , Z̃
(n,k)
ms (ρhb

ms) = Z
(n,k)
ms (ρhb

ms) and

Z̃
(n,k)
ms (ρht

ms) = Z
(n,k)
m,s+1(ρht

ms) .

4. Compute the mesh function V
(n,k)
m (P ), P ∈ ω̄h

m by piecing together the
solutions on the subdomains

V (n,k)
m (P ) =

{
V

(n,k−1)
m (P ) + Z

(n,k)
ms (P ) , P ∈ ω̄h

ms \
(
ϑ̄h

m,s−1 ∪ ϑ̄h
ms

)
;

V
(n,k−1)
m (P ) + Z̃

(n,k)
ms (P ) , P ∈ ϑ̄h

ms, s = 1, . . . , Sm − 1 .

(8)

5. Stopping criterion: If a prescribed accuracy is reached, then stop; oth-
erwise go to Step 2.
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We say that Ū(P ) is an upper solution of (2) if it satisfies the inequalities

LhŪ(P ) + f(P, Ū) ≥ 0 , P ∈ ωh , Ū ≥ g on ∂ωh .

Similarly, U(P ) is called a lower solution if it satisfies the reversed inequal-

ities. If the initial mesh function V
(n,0)
m is an upper or lower solution on

subdomain ω̄h
m, then the sequence generated by (6)–(8) converges monoton-

ically from above or below, respectively, to V
(n)
m . This is proven in a similar

way as Theorem 3 by Boglaev [2].

Algorithm (6)–(8) can be carried out by parallel processing. Each of the
box-subdomain problems ω̄ms, s = 1, . . . , Sm , in Step 2 can be solved on their
own processor in parallel. Next in Step 3, each of the interfacial subdomain
problems ϑ̄h

ms, s = 1, . . . , Sm − 1 , can be solved on their own processors in
parallel. Being able to construct algorithms for use on parallel computers
aids in the reduction of problems caused by processor time and computer
memory.

3.3 Numerical stability of the outer and inner iterates

Here we show that the combined domain decomposition algorithm, based on
the outer (4), (5) and inner iterates (6)–(8), possesses numerical stability.

On each subdomain ω̄h
m, m = 1, . . . ,M , let the stopping criterion for the

inner iterates (6)–(8) be defined in the form

‖Rh(P, V (n,k)
m )‖ωh

m
≤ ∆ , (9)

where ‖ · ‖ωh
m

is the maximal norm and ∆ is a prescribed accuracy.

The solution generated by the combined domain decomposition algo-
rithm (4), (5), (6)–(8) with the stopping criterion (9) is denoted by V̂ (n)(P ),
P ∈ ω̄h .
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Theorem 1 The combined domain decomposition algorithm (4), (5), (6)–
(8), with the stopping criterion (9), is numerically stable:

‖V̂ (n) − V (n)‖ω̄h ≤ ∆/c∗ , n ≥ 1 , (10)

where ‖ · ‖ω̄h is the maximal norm and V (n)(P ) is the solution generated by
the outer iterates (4) and (5).

Boglaev and Pack [3] gave the full proof of the theorem.

4 Numerical experiments

Consider the test problem with b(x, y) = 1 , f(x, y, u) = 1 − exp (−u) and
g(x, y) = 1 in (1).

We apply the domain decomposition algorithm (4), (5), (6)–(8), to this
problem using a piecewise uniform mesh in the x-direction and a uniform
mesh in the y-direction. As this problem has an elliptic boundary layer near
x = 1 , half the mesh points are used within this layer. The equation for the
width of the boundary layer is σx = 2ε log(Nx)/β , β = 1 [1].

For the following numerical results, the stopping criterion for the outer
iterates is defined by ∣∣∣∣V (n) − V (n−1)

∣∣∣∣
ω̄h ≤ ∆ ,

and the stopping criterion for the inner iterates is defined in (9), where
∆ is the required accuracy. For this test problem the required accuracy is
∆ = 10−6 .

For the following experiments, we focus on balanced domain decomposi-
tions where M is even and M/2 vertical strips are placed within the boundary
layer. Balanced domain decompositions are more suited to parallel imple-
mentation than unbalanced domain decompositions. The overlap between
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Table 1: Outer iteration count using the minimum and maximum overlap
size, above and below the line, respectively.

ε 10−2 10−3 10−4

N\M 2 4 8 2 4 8 2 4 8
Convergence Iteration Count

25 6
3

10
5

13
13

4
3

10
5

13
13

3
3

10
5

13
13

26 7
3

13
4

17
7

4
3

13
4

17
7

3
3

13
4

17
7

27 10
3

19
4

25
5

4
3

19
4

25
5

3
3

19
4

25
6

the vertical strips is chosen so that for the two vertical strips either side of
the boundary layer, the overlap occurs outside of the boundary layer.

The number of mesh points in the x-direction and y-direction are set equal
to N , and the width of the interfacial subdomains is held fixed at N/(2S),
where S = Sm , m = 1, . . . ,M .

For the tables presented, results for the minimal and maximal size of the
overlaps appear above and below the line, respectively.

Table 1 shows the outer iteration counts over varying numbers of vertical
strips and for different values of ε and N . In our numerical experiments the
number of horizontal strips did not affect the outer iteration count.

The outer iteration counts in Table 1 show that for the larger overlap size
the outer iteration count is less. As the number of vertical strips increases,
so does the number of outer iterations needed for the algorithm to converge.
Table 1 also shows that the domain decomposition algorithm uniformly con-
verges in its outer iteration count with respect to ε.

Table 2 displays the serial execution time over varying numbers of vertical
and horizontal strips, for different values of ε and N . From these results
we observe that the execution time is smaller for the maximal overlap size
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Table 2: Execution time using the minimum and maximum overlap size,
above and below the line, respectively.

ε 10−2 10−3 10−4

N S\M 1 2 4 8 1 2 4 8 1 2 4 8
Execution time (seconds)

1 0.4 0.4
0.2

0.4
0.2

0.4
0.4

0.3 0.2
0.2

0.3
0.1

0.3
0.3

0.3 0.2
0.1

0.2
0.1

0.2
0.2

2 0.4 0.6
0.2

0.6
0.3

0.6
0.6

0.4 0.3
0.2

0.4
0.2

0.4
0.4

0.3 0.2
0.2

0.3
0.1

0.3
0.3

25 4 0.4 0.6
0.3

0.7
0.4

0.9
0.9

0.4 0.4
0.2

0.5
0.2

0.6
0.6

0.4 0.3
0.2

0.5
0.2

0.5
0.5

8 0.4 0.7
0.4

1.1
0.7

1.9
1.9

0.3 0.4
0.2

0.7
0.3

1.0
1.0

0.3 0.3
0.2

0.6
0.2

0.9
0.9

1 13.8 6.2
3.4

4.4
1.9

3.5
2.2

11.2 3.2
3.3

2.7
1.1

2.2
1.0

16.5 2.9
2.7

2.6
0.8

1.9
0.7

2 8.5 7.9
3.2

6.1
2.5

5.4
3.1

9.9 4.2
2.7

4.1
1.5

3.3
1.5

12.8 3.5
2.5

3.4
1.0

2.8
0.9

26 4 5.9 7.5
3.1

6.3
2.5

6.4
3.5

10.2 4.5
2.8

5.0
1.7

4.6
1.9

13.1 3.7
2.7

4.2
1.2

4.0
1.3

8 4.5 7.7
3.9

8.1
3.5

10.6
5.5

8.1 4.6
2.9

5.7
1.9

6.4
2.6

12.7 4.0
2.7

5.1
1.4

6.1
1.9

1 226.4 619.4
134.0

114.6
52.4

49.8
24.5

289.2 239.8
150.0

56.2
36.8

26.9
11.4

627.2 372.9
163.7

61.1
33.4

25.8
8.4

2 203.1 415.1
105.3

94.2
37.8

68.7
24.1

326.9 176.0
135.9

49.6
27.9

39.5
12.4

662.8 245.8
160.8

48.1
24.4

37.1
8.8

27 4 106.8 250.1
66.1

95.6
32.1

73.9
24.9

202.9 131.7
97.1

53.5
23.8

49.7
14.2

387.9 170.0
107.0

51.3
20.9

47.2
10.3

8 63.8 186.7
62.3

106.6
40.7

96.2
31.0

140.0 132.5
83.6

58.5
24.0

63.8
16.3

265.8 164.7
88.2

56.0
21.4

62.1
12.4
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compared to that of the minimal overlap size.

The highlighted results in Table 2 are the minimal execution times for the
maximal and minimal overlap size in each column for N = 128 . These show
that the absolute minimum execution time, for both the minimal and maxi-
mal overlap size, for all ε, occurs when the number of vertical strips is 8 and
the number of horizontal strips is 1. By using these execution times, the ac-
celeration (minimum execution time of the domain decomposition algorithm/
execution time of the undecomposed algorithm) of the domain decomposition
algorithm is 9, 25, 75, for ε = 10−2 , 10−3, 10−4, respectively.

Table 2 shows that for a fixed number of vertical strips the ideal number
of horizontal strips is the same for all values of ε. For example, for M = 2 ,
4, 8, the minimum execution time occurs for both the minimal and maximal
overlap size when S = 8 , 4, 1, respectively.

From our numerical experiments we draw the following conclusions.

• The outer iteration count is uniformly convergent in ε.

• The execution time of the domain decomposition algorithm decreases
as the overlap size increases.

• The serial execution times for the domain decomposition algorithm
show a considerable acceleration compared to the undecomposed method.
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