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Modelling weather data by approximate
regression quantiles.
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Abstract

In the paper we introduce and explore an approximate
regression quantiles method. It is based on a new interpreta-
tion of M-functionals as quantiles of probability distributions
which are determined by the original distribution and the M-
function. A correction factor can be applied and this brings
the corrected M-functional, called an approximate quantile
functional, very close to the quantiles of the original distribu-
tion. In the present paper we extend approximate quantile
functionals onto parametric models and call them approxi-
mate regression quantiles. We next model probability distri-
butions of some weather components as they vary over time.
We use very simple, but non-linear, parametric models. By
applying the approximate regression quantiles method we
obtain five-curve summaries of the varying over time proba-
bility distributions of the considered weather components.
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1 Introduction

Regression quantiles, introduced in [5] and [2], provided a method of
estimation of conditional quantiles of parametric regression models.
Conditional quantiles in regression models are useful to describe
noncentral parts, or even upper and lower boundaries of a cloud
of data points. The regression-type data typically has been used
to estimate only the behaviour of the central part, that is, the ex-
pected value of the conditional distribution also called a regression
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curve. The regression quantiles extend this framework onto noncen-
tral parts of the conditional distribution.

In this paper we introduce a method of approximate regression
quantiles. The approximate regression quantile method is based on
a new simple interpretation of M-functionals as quantiles of proba-
bility distributions which are determined by the original distribution
and by the M-function (Section 2). Based on this interpretation, a
correction factor can be applied (Section 3). This brings the cor-
rected M-functionals, called approximate quantile functionals, very
close to conditional quantiles of the original distribution. This cor-
rection is next extended onto the case of parametric models, re-
sulting in the approximate regression quantile method discussed in
detail in Section 4.

We aim next to model probability distributions of weather com-
ponents such as temperature, radiation and many other weather
factors, as they vary during the day and also on larger, monthly or
yearly, time scales. We use very simple, but non-linear, parametric
models to describe variability of weather factors over time. By ap-
plying the approximate quantiles method we obtain five-curve sum-
maries of the varying over time probability distributions. This re-
sults in a simple and comprehensive description of the heteroscedas-
tic nature of the considered data (Section 5).

2 M-functionals and M-estimators

Recall that the expected value can be defined as

E Y = EF Y = Arg Min
θ

EF (Y − θ)2 . (1)
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In a similar way, we have

Median Y = Arg Min
θ

EF |Y − θ| . (2)

For general M-functionals, we have

QM(F ) = Arg Min
θ

EF M (Y − θ) , (3)

where M(y) is a convex function. Hence, the median is a particular
M-functional, corresponding to M(y) = |y| .

It is important for our method to understand what the M-func-
tional represents. In the remaining part of this section we recall the
interpretation of M-functionals given in [6] and extend it to the case
of regression quantile modelling.

Let M denote a convex function which has bounded right hand
side derivative, M ′(y) , such that

−∞ < −α = lim
y→−∞

M ′(y) < 0 < lim
y→∞

M ′(y) = β < ∞ . (4)

Then the derivative of M is bounded and non-decreasing and hence
it is a linear function of some cumulative distribution function (cdf),
say G(y) :

M ′(y) = (α + β)G(y)− α . (5)

If Y has a cdf F and p = β/(α + β) , then one can show that

EF M (Y − θ)− EF M (Y ) = (α + β)

∫ θ

0

Pr (Y − Z ≤ t)− p dt ,

(6)

where Z is a random variable independent of Y and having G as
its cdf. Hence, QM(F ) , the minimizer of EF M (Y − θ) , coincides
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with a p-quantile of random variable U = Y − Z , where Y ∼ F ,
Z is independent of Y and Z ∼ G .

If α = β , in particular if function M is symmetric, then the
M-functional coincides with the median of U = Y − Z . However,
if either Y or Z are not symmetric then the medians of Y and U
may differ.

Based on (6), we start with a given cdf G and derive the cor-
responding convex function M(y)

MG,p(y) =

∫ y

0

(2G(z)− 1) dz + (2p− 1)y . (7)

Clearly, with MG,p replacing M in (3), we get an M-functional co-
inciding with a p-quantile of Y − Z , Z ∼ G .

Examples:

1. If
M(y) = |y| (8)

then Z = 0 and

G(z) =

{
0 , if z ≤ 0 ,

1 , otherwise.
(9)

In this case, by using MG,p(y) in (3), we get an M-functional
coinciding exactly with the p-quantile of Y . This is a well-
known case, cf [7, p.23, Problem 3], being also at the core of
regression quantiles introduced in [5].

2. If M is a Huber function (cf [3]) and

Ms(y) =


1

2s
y2 , if y ∈ [−s, s] ,

|y| − s

2
, otherwise ,

(10)
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then Z is uniformly distributed on interval (−s, s) , that is,
Z ∼ U(−s, s) , and

Gs(z) =


0 , if z ≤ −s ,
1

2
+

z

2s
if z ∈ [−s, s] ,

1 , otherwise .

(11)

By using MGs,p(y) in (3) we obtain an M-functional coinciding
with the p-quantile of Y − Z , where Z ∼ U(−s, s) .

In this paper we shall discuss and use natural estimators of M-func-
tionals, called empirical M-functionals. The empirical M-function-
als can be obtained from M-functionals by replacing the cdf F in (3)
with the empirical cdf F̂n .

3 Approximate quantiles

If the convex function is of the form given by formula (7) then we
use notation

QG,p(F ) = Arg Min
θ

EF MG,p (Y − θ) , (12)

for the corresponding M-functional defined by (3) with M = MG,p .

This functional, QG,p(F ) , equals a p-quantile of U = Y −Z and,
in general, differs from the p-quantile of F . Therefore we use the
following correction:

qp(F ) = QG1/2
(F ) +

√
σ2

σ2 + Var(G)

(
QGp(F )−QG1/2

(F )
)

, (13)
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where σ2 equals the variance of Y and Var(G) is the variance of
random variable Z with cdf G. We call qp(F ) an approximate
quantile functional.

If Y ∼ N(µ, σ2) and G(y) = Φ (y) , where Φ(y) is the cdf of
the standard normal distribution, then the correction (13) returns
exact quantiles of F . In many other cases, in particular for nearly
symmetric unimodal distributions with finite variance, the approx-
imation is fairly accurate. The correction works always in the right
direction, though, for F very skewed and significantly departing
from a normal distribution, it can be less accurate.

4 Approximate regression quantiles

and parametric models

Consider now a heteroscedastic regression model

Y = g (µ, x) + ε(x) , (14)

where x is an explanatory variable, µ is a vector of unknown regres-
sion parameters and ε(x) is an error with probability distribution
depending on x.

We have seen that qp(F ) , given by (13), was picking up a point
roughly corresponding to the p-quantile of F . By applying similar
method to the parametric model we can fit the parameters of the
model to leave approximately 100 × p-percent of empirical points
below the estimated curve and 100× (1−p)-percent of points above
the estimated curve.

Suitable parameters of the model are defined by

µp = Arg Min
µ

∫
EF MG,p (Y − g (µ, x)) τ(dx) , (15)



4 Approximate regression quantiles and parametric models C236

where τ is a measure of distribution of the design points of the
experiment. We call the resulting curve coinciding with the graph
of the function

y = g (µp, x) , (16)

a regression M-functional of the heteroscedastic distribution
of Y . This term is consistent with the regression quantile name
used in the literature (cf [5]) in the case of M(y) = |y|+ (2p− 1)y .
Similarly, as in Section 3 we define approximate regression quan-
tiles, which are based on regression M-functionals and are used in
the following part of the paper. The approximate regression
quantiles are

qR
p (x) = g

(
µ1/2, x

)
+

√
σ2

σ2 + Var(G)
(g(µp, x)− g(µ1/2, x)) , (17)

where σ2 equals the marginal variance of Y and Var(G) equals the
variance of G, with G defined in (5). We shall also consider em-
pirical regression M-functionals and empirical approximate
regression quantiles as estimators of the corresponding popula-
tion functionals. They are obtained from the population functionals
by replacing the population distribution of (x, Y ) with the empirical
distribution based on {(x1, Y1), . . . , (xn, Yn)} .

We propose to estimate five such approximate regression quan-
tiles curves, corresponding to p = 0.05, 0.25, 0.5, 0.75 and 0.95 .

Hence, we obtain a five-curve description of the distribution
of Y (x) . This is analogous to the popular five quantile summary
of the Tukey’s description of probability distributions of random
variables. In the remaining part of this paper we apply the five-
curve description of heteroscedastic distributions in the case of var-
ious weather components. In all our graphs we use colours: red for
p = 0.05 and 0.95, blue for p = 0.25 and 0.75, and green for p = 0.5 .
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5 Approximate regression quantiles

modelling of weather data

We used meteorological data from the Automatic Weather Station,
aws, at Macquarie University (http://atmos.es.mq.edu.au/aws/
aws2/) to illustrate applications of approximate regression quan-
tiles.1

We used four years of data, from 1994 to 1997, recorded at
15 minute intervals. The data are kept in monthly files.

5.1 Daily and monthly variability

Variability is an important feature of weather data. Models which
describe daily variability as well as the general trend of each weather
component are advantageous. The crosses in Figure 1 show the
global radiation for the first three days (72 hours) in 1995. See that
maximum global radiation occurs in the middle of the day. The dots
in Figure 2 show the global radiation for the month of January in
1995. The overall daily trend is apparent, as is the heteroscedastic
nature of the data.

5.2 Parametric models

For each weather component of interest we proposed a simple model,
with as few parameters as possible (maximum of 3), to describe the
daily pattern, typical for a given month, as a function of time.

1The aws station is administered by the Atmospheric Science Group, Divi-
sion of Environmental & Life Sciences, Macquarie University.

http://atmos.es.mq.edu.au/aws/aws2/
http://atmos.es.mq.edu.au/aws/aws2/
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Figure 1: Data points and regression quantiles (model (18)) for
global radiation over the first 72 hours of January, 1995.
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Figure 2: Data points and regression quantiles (model (18)) for
global radiation in January, 1995, on a daily scale from 0 to 24 hours.
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Some simple models we used include: polynomial functions to
describe radiation data; cosine functions to describe wet and dry
bulb temperatures, soil temperature, soil heat flux, relative humid-
ity and wind speed; and maximum of constant and cosine functions
to describe the wind speed data.

Functions of polynomials were chosen to fit the variables when
variation was mostly confined to the daylight hours, as in the
case of radiation data presented in Figures 1 and 2. The mod-
els for these data were of the form

Y =

{
A((X − AM)× (PM−X))B + ε , for daylight hours ,
ε , otherwise ,

(18)
where AM and PM are the average monthly times of sunrise
and sunset, respectively, A and B are parameters to be esti-
mated, and X is time.

Cosine functions were used where variation occurred over a 24 hour
period and in a roughly periodic pattern, for example in the
case of temperature data, shown in Figure 3. In general, the
minimum daily temperature occurs just before sunrise, and
the maximum occurs mid afternoon. The models for these
data were of the form

Y = A× cos

(
π(X + B)

12

)
+ C + ε , (19)

where Y is the recorded temperature at time X and A, B
and C are the parameters to be estimated.

Maximum of constant and cosine functions model was used
to describe the wind speed data shown in Figure 5. We dis-
cuss this application in Section 5.5. The models for these data
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were of the form

Y = max {C × cos(AX + B) + ε, 0.2} , (20)

where Y is the estimated at time X and A, B and C are
parameters to be estimated.

5.3 Numerical methods

To obtain estimates of parameters of regression M-functionals based
on models g (µp, x) , discussed above, we solved the minimization
problems

µ̂p = Arg Min
µ

1

n

n∑
i=1

MG,p (Yi − g (µ, xi)) , (21)

where we used Huber’s M-function (10) and MG,p given by (7).
Next, we obtained approximate quantile regressions given by (17).
We estimated σ2 with

σ̂2 =
1

n

∑
r2
i , (22)

where
ri = Yi − g(µ̂1/2, xi) (23)

were the residuals from fitting the median curve (16) with p = 1/2
and µ̂1/2 obtained from (21). All computations leading to estimators
of model parameters were carried out in Matlab.

5.4 Approximate quantile curves for weather
data

To describe the data, a simple regression curve is not sufficient be-
cause then only the centre of the distribution is estimated and no
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description of the heteroscedastic nature of data is reported.

We applied our five-curve technique described earlier to estimate
parameters of general curves describing the distribution of the data,
conditional on time.

We used the approximate regression quantile method using M-
estimators with Huber M-function, with s = 1 , described in Ex-
ample 2, to estimate parameters of curves corresponding to the five
p-quantiles of the data. In this way we obtained a comprehensive
and compact summary of the data. Each curve estimates an ap-
proximation to the pth quantile of the distribution corresponding
to the model under consideration. For example, approximately 5%
of the observed values should be below the fifth quantile curve and
5% should be above the 95th quantile curve.

The lines on Figure 2 show the five estimated regression quantile
curves describing, conditional on time, the distribution of global
radiation for that month. These regression lines are also shown in
Figure 1, for each of the first three days of January, 1995. The first
day shows a pattern typical for for the upper 95%, the second day
shows a pattern close to the lower 5% and and the third day shows
a pattern close to the lower 25% regression curves, respectively.

Similarly, in Figure 3 we show five regression quantile curves
for wet bulb temperature. Figure 4 shows how the distribution of
global radiation at the middle of the day changes over the four year
period, 1994–1997. We plotted the midday values of each of the five
regression curves, estimated for all 4 × 12 = 48 months. It is in-
teresting that the upper regression curves show clearly the seasonal
changes while the lowest 5% curve has a more stable character. The
alternating behavior of the 25% and 50% curves is also interesting
and not reported earlier. All the distributions are very skewed to
the left.
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Figure 3: Data points and regression quantiles (model (19)) for
wet bulb temperature in January, 1995, on a daily scale from 0 to
24 hours.
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Figure 4: Regression quantiles for global radiation at the middle
of the day over 48 months: January 1994 – December 1997.
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5.5 The correction factor for weather data

Approximate regression quantiles (17) differ from regression M-func-
tionals (16). The approximate regression quantiles are shrunk to-
wards the central, median regression line by the correction factor

κ =

√
σ2

σ2 + Var(G)
. (24)

This correction has descriptive character and tries to compensate for
inflation of the distribution of Y (x) caused by using in estimation an
M-function corresponding, via (5), to the cdf G. If Var(G) � σ2

then κ ≈ 1 . This was the case in most of the considered examples,
however in some cases, for example, in the case of wind speed data,
the factor κ = 0.8325 .

The model considered for the wind speed data was given by (20)
and takes into account that the anemometer measuring wind speed
records all low wind speeds between 0 and 0.2m/s as 0.2m/s. By
estimating only regression M-quantile curves (16) we get the top
picture in Figure 5. The graphs of the curves are evidently shifted
too much apart from the graph of the central, median regression line.
For example, there is no data point located below the bottom 5%
regression M-quantile.

The approximate regression quantile curves are shrunk towards
the central, median regression line, leaving approximately 5% data
points below and above of the bottom and top curves, respectively.
This example shows that using uncorrected regression M-quantiles
may lead to significantly inflated picture of the conditional distri-
bution of Y (x) .
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Figure 5: Wind speed for August 1994 using model (20), on a daily
scale from 0 to 24 hours. Above: regression M-quantiles. Below:
approximate regression quantiles.
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6 Conclusions

The approximate regression quantiles introduced in this paper are
related to the regression quantiles, introduced in [5] and [2] and then
extended in a number of papers in various directions, cf [4]. The
approximate regression quantiles differ from regression quantiles by
using a general convex M-function instead of the absolute value
function and by using correction (17).

By using convex functions, different from the absolute value
function, and correction (17), one can reduce the variance of the
resulting estimators, cf [6]. There is also a numerical advantage.
The linear regression quantiles can be computed using a linear pro-
gramming algorithm [5] or a reduced gradient algorithm for l1 [8]. In
the case of models nonlinear in parameters general minimizing algo-
rithms are used and convex M-functions with continuous derivatives
improve their numerical performance.

General convex functions combined with regression models have
been considered earlier in the literature, cf [1]. However, by not
using correction (17) one may obtain results significantly depart-
ing from any sensible modelling of conditional quantiles. Correc-
tion (17), based on the novel interpretation of M-functionals is the
new contribution of the present paper.

The results obtained by modelling weather components by ap-
proximate regression quantiles show that the five curve description
of the conditional distribution of weather components is very infor-
mative.
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