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An iterative procedure for calculating
minimum generalised cross validation

smoothing splines

P. A. Hancock∗ M. F. Hutchinson†

(Received 1 June 2001)

Abstract

This study analyses a simple iterative procedure for esti-
mating minimum generalised cross-validation (gcv) univari-
ate smoothing splines. The results provide guidelines for the
development of a similar methodology to estimate minimum
gcv bivariate thin plate smoothing splines. The method-
ology is based on the techniques described in Hutchinson
[ANZIAM J, 42(E):C774–C796, 2000], which uses nested
grid sor iterative methods in order to solve finite element
thin plate smoothing spline systems efficiently for large data
sets. The method also uses the stochastic approximation
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to the gcv developed by Hutchinson [Commun. Stats —
Sim. and Comp., 18:1059–1076, 1989]. A double iteration is
used to produce increasingly accurate estimates of the min-
imum gcv smoothing parameter and the smoothing spline.
First and second derivatives of the gcv with respect to
the smoothing parameter are used to update the smooth-
ing parameter. Convergence of the sor iteration is im-
proved significantly by correcting the solution estimate after
each smoothing parameter update using the estimate of the
derivative of the solution with respect to the smoothing pa-
rameter.
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1 Introduction

Thin plate smoothing splines are commonly used to fit smooth sur-
faces to scattered noisy data. Analytic methods of calculating thin
plate smoothing splines require O(n3) operations. A number of
strategies for improving the computational efficiency of thin plate
smoothing spline calculation exist [2, 3, 4]. Finite element tech-
niques have also been developed [12, 10]. All of these methods tend
to focus on the numeric-analytic properties of thin plate smoothing
splines rather than their statistical properties, and do not incorpo-
rate a mechanism for optimising smoothness.

For practical spatial interpolation problems, surface smoothness
is a central issue given that the data observations contain a sig-
nificant noise component. One method of optimising smoothness
is to minimise the generalised cross validation, which is a mea-
sure of predictive error. Minimising the generalised cross-validation
(gcv) has been shown by Craven and Wahba [6] to be an accu-
rate method of estimating the amount of smoothing corresponding
to the minimum error solution. Minimum gcv thin plate smooth-
ing splines have been widely used in spatial interpolation applica-
tions [11, 15, 23, 21, 19, e.g.]. The methods presented in this study
are designed to efficiently compute accurate finite element approx-
imations to univariate smoothing splines, incorporating procedures
for optimising smoothness by minimising gcv. Estimation of the
gcv requires the stochastic estimator of the trace of the influence
matrix, developed by Hutchinson [13]. Analysis of the algorithm
for univariate splines was intended to assist in the design of an op-
timal numerical procedure for estimating finite element minimum
gcv bivariate thin plate smoothing splines.

Hutchinson [16] developed a simple multigrid based strategy
which calculates finite element approximations to thin plate smooth-
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ing splines for elevation data in O(N) operations, where N is the
number of grid points. This method emphasises the statistical
framework of thin plate smoothing splines [14], and optimises the
smoothness to yield a user specified residual sum of squares. This
criterion is appropriate in the context of interpolating topography,
where an estimate of the amount of noise is available [12]. The pro-
cedure presented here is a variation on the Hutchinson [16] method,
in that it optimises smoothness by minimising gcv rather than pre-
scribing a residual sum of squares from the data.

A hierarchial Quadratic B-spline framework was used to estimate
the smoothing spline solution, to meet the natural requirement of
first derivative continuity while maintaining compact support. The
nested grid procedure used a double iteration to produce increas-
ingly accurate estimates of the minimum gcv smoothing parameter
and the smoothing spline. The optimal smoothing parameter was
estimated using a Taylor’s series expansion of the gcv in terms of
the smoothing parameter. Methods described in Hutchinson [16]
were used to calculate the derivatives of the solution estimate with
respect to the smoothing parameter. Convergence was improved
by making a first order correction to the solution as values of the
smoothing parameter were updated. Further analysis of the per-
formance of this algorithm led to modifications that increased the
efficiency of the derivative estimations.

2 Quadratic B-splines

The B-spline framework was developed by Schoenberg [22] and is
described in de Boor [5]. In one dimension, the rth normalised B-
spline Br,k(x) of degree k, and ‘order’ k+1, with knots γr, . . . , γr+k+1
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is defined recursively (de Boor [5]):

Br,0(x) =

{
1 , if γr ≤ x ≤ γr+1 ,
0 , otherwise ;

(1)

Br,k+1(x) =
x− γr

γr+k+1 − γr

Br,k(x) +
γr+k+2 − x

γr+k+2 − γr+1

Br+1,k(x) . (2)

The B-spline functions Br,k form a basis for the vector space of
spline functions of degree k where r = 0, 1, . . . , N + k − 1 and N is
the number of knot intervals. The basic properties of this B-spline
basis are

Br,k(x) ≥ 0 , for all x ∈ R ; (3)

supp Br,k = [γr, γr+k+1] ; (4)
N+k−1∑

r=0

Br,k(x) = 1 . (5)

Quadratic B-splines, or B-splines of order 3, can be simply defined
in terms of first order B-splines using (2). They are continuous
functions with continuous first derivatives and support of 3 knot
intervals. This leads to 5-banded systems of discretised smooth-
ing spline equations, as discussed in Section 4. While they require
more storage than the diagonal systems arising from first order B-
spline (or finite difference) discretisations, the results presented in
Section 6 show that the ability of quadratic B-splines to produce
smooth functions at coarse discretisations is essential to the devel-
opment of an efficient minimum gcv algorithm.

3 Hierarchial B-splines

A hierarchial spline space can be defined as a linear span of B-
splines with nested knot sequences [20]. The hierarchial spline space
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provides a natural framework for defining different resolutions of B-
spline discretisations for use in a multigrid scheme. Consider the
knot sequences

γr,l = a + r2lh , r = 0, . . . , Nl + k + 2 , l = 0, 1, 2, . . . (6)

where a is the first knot in the sequence, l is the grid level, h is the
width of the knot intervals on the finest level and Nl is the number
of knot intervals on level l. The width of the knot intervals doubles
as l is incremented. The B-spline Bl

r,k of level l is the B-spline to

the knot sequence γr,l, . . . , γr+k+1,l with supp Bl
r,k = [γr,l, γr+k+1,l] .

Consider the spaces

Sl = span {Bl
r,k} =

{
sl ∈ Sl | sl =

dl∑
r=1

αrB
l
r,k ; αr ∈ R

}
,

where dl is the dimension of level l. These spaces form a sequence
of nested subspaces of S, such that

Sp ⊂ Sp−1 ⊂ · · · S1 ⊂ S0 . (7)

This means that any element in Sl can be written as a linear combi-
nation of the basis vectors Bl−1

r,k of Sl−1 , although this representation
would be redundant since the dimension of Sl is half that of Sl−1 .
B-splines are therefore ‘refinable’ [7], in that each one can be re-
expressed as a linear combination of one or more ‘smaller’ basis
functions. In the multigrid context, this means that standard inter-
grid transfer operators are not required. In the case of nested grid,
refinement occurs by expressing each coarse grid basis element in
terms of the fine grid basis elements:

Bl
r,k =

2r+1∑
i=2r−2

βiB
l−1
i,k (x) , (8)

where (β2r−2, β2r−1, β2r, β2r+1) = (1/4, 3/4, 3/4, 1/4) [7].
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4 Quadratic B-spline approximation of

univariate smoothing splines

For the purposes of obtaining a smooth univariate representation
of noisy data, standard practice is to choose the function y(x) that
minimises

1

n

n∑
i=1

(zi − y(xi))
2 + λ

∫ b

a

[y′′(x)]2 dx , x ∈ [a, b] , (9)

where zi are the data observations at locations xi, n is the number of
data points, and λ is a positive smoothing parameter [8]. The min-
imiser, y(x), of expression (9) over C2[a, b] (the space of all functions
that are continuous, and have continuous first and second derivatives
on the interval [a, b]) is a natural cubic spline. O(n) algorithms ex-
ist for calculating the univariate analytic spline solution [17]. How-
ever, this study investigates numerical approximations to univariate
splines that can be extended to higher dimensions.

A quadratic B-spline approximation f(x) of the function y(x) in
equation (9) is

f(x) =
N+1∑
r=0

αrBr,2(x) . (10)

Thus f is a spline function composed of quadratic B-spline elements.
We substitute the approximation f into equation (9) and choose the
coefficients αr to minimise (9). This requires differentiating f with
respect to x. For this, the relation

d

dx

(
N+1∑
r=0

αrBr,k

)
=

N+1∑
r=1

k(αr − αr−1)

γr+k − γr

Br,k−1(x) , (11)

was used [5]. See that the first derivative of a spline function f is
found simply by differencing its B-spline coefficients. For quadratic
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splines with knots equally spaced at intervals of length h this gives

f ′(x) =
N+1∑
r=1

(αr − αr−1)

h
Br,1(x) , (12)

f ′′(x) =
N+1∑
r=2

αr − 2αr−1 + αr−2

h2
Br,0(x) . (13)

Thus the coefficients of the second derivative of a quadratic B-spline
are given by the second difference of its coefficients. The simplic-
ity of this relationship further motivates the choice of quadratic
B-splines. The second term of the minimisation problem in equa-
tion (9) is then

λ

∫
(f ′′(x))

2
dx = λh

N+1∑
r=2

(
αr − 2αr−1 + αr−2

h2

)2

=
λ

h3

N+1∑
r=2

(αr − 2αr−1 + αr−2)
2 . (14)

The discretised minimisation problem is then

‖Pα− z‖2 +
λ

h3
‖Qα‖2 , (15)

where α is a vector containing the N + 2 quadratic B-spline coeffi-
cients αr and z is a vector of length n containing the data observa-
tions zi. The matrix P operates on α to calculate values of f(x) at
data point locations i and is

[P ]ir = Br,2(xi) . (16)

As there are at most 3 non-zero B-splines in any knot interval,
the matrix P has no more than 3 non-zero entries in each row.
The matrix Q is a 5-banded finite difference matrix calculating the
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second differences in equation (14). Differentiating expression (15)
with respect to α and equating to zero gives(

P T P +
λ

h3
QT Q

)
α = P T z = v0 . (17)

Techniques for numerically solving this system whilst simultane-
ously optimising the smoothing parameter are discussed below. The
conditioning of (17) had important ramifications in designing the
numerical algorithm. The matrix QT Q is rank deficient, which
means the system is poorly conditioned for large values of λ/h3 .
This situation occurs at fine grid spacings, especially if the optimal
solution is highly smooth and has a large value of λ.

5 Iterate for optimum λ to minimise

GCV

The techniques used in this study for optimising the parameter λ
in equation (17) were based on an adaptive iterative strategy de-
scribed in Hutchinson [16]. The process involves double iteration to
produce increasingly accurate estimates of both the solution and the
smoothing parameter. The method uses nested grid to iteratively
solve equation (17) whilst periodically updating the estimate of λ
using the current solution estimate.

5.1 Estimate the derivatives of the GCV with
respect to the smoothing parameter

Estimates of the value of the smoothing parameter corresponding
to minimum gcv were obtained by a second order Taylor’s series
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approximation:

gcv(θ) = gcv(θq) +
dgcv(θq)

dθ
(θ− θq) +

d2gcv(θq)

dθ2

(θ − θq)
2

2
(18)

where θ = log λ . The value of θ that minimises gcv is estimated
by

θ = −b/2c , (19)

where b = −dgcv(θq)

dθ
+

d2gcv(θq)

dθ2
θq , (20)

c =
1

2

d2gcv(θq)

dθ2
. (21)

The derivatives of the gcv with respect to θ are calculated using

gcv = n
R

Tr2 , (22)

where R is the residual sum of squares
∑n

i=1(zi − f(xi))
2 and Tr is

trace(I − A) , where A is the influence matrix [14]. Differentiating
expression (22) with respect to θ gives

dGCV

dθ
= =

n

Tr4

(
dR

dθ
Tr2 − 2Tr

dTr

dθ
R

)
, (23)

d2GCV

dθ2
=

n

Tr4

[
d2R

dθ2
Tr2 −

(
2Tr

dTr

dθ
+ 2

(
dTr

dθ

)2
)

R

]

− 4n

Tr5

dTr

dθ

(
dR

dθ
Tr2 − 2Tr

dTr

dθ
R

)
. (24)

It is shown in Hutchinson [16] that

dR

dθ
= 2(v1)T dα

dθ
, (25)

and
d2R

dθ2
= 2(v1)T d2α

dθ2
+ 2

(
P T P

dα

dθ

)T
dα

dθ
, (26)

where v1 = P T (Pα− z) . (27)
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Hutchinson [16] further demonstrates that dα/dθ satisfies the same
system of equations as (17) with different right hand side vectors,
so that (

P T P +
λ

h3
QT Q

)
dα

dθ
= v1 , (28)

and similarly it can be seen that(
P T P +

λ

h3
QT Q

)
d2α

dθ2
= v2 , (29)

where

v2 = −v1 + 2P T P
dα

dθ
. (30)

These equations are therefore solved iteratively with minimum ad-
ditional storage requirement.

The estimates of Tr and its derivatives were obtained using
the stochastic estimate developed by Hutchinson [13]. Hutchin-
son [13] showed that uT Au is a minimum variance, unbiased esti-
mator of trA , where u = (u1, . . . , un)T is a vector of n independent
samples from the random variable U that takes the values ±1 each
with probability 1/2 . An estimate of Au is obtained by solving(

P T P +
λ

h3
QT Q

)
b = P T u = w0 . (31)

An estimate of Au is then given by Pb . A similar stochastic esti-
mator has been developed by Girad [9].

To obtain estimates of dTr/dθ and d2Tr/dθ2 , a slightly different
approach was taken to that used to solve for the derivatives of R.
Differentiating equation (31) with respect to λ instead of θ gives(

P T P +
λ

h3
QT Q

)
db

dλ
= −QT Q

h3
b = w1 . (32)
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Note that the right hand side of equation (32) has been expressed
in terms of the solution vector b rather than the data vector u [16].
Differentiating uT Pb with respect to θ and using (31) and (32), the
derivatives of Tr with respect to θ are

dTr

dθ
=

λ

h3
bT QT Qb , (33)

d2Tr

dθ2
= 2

λ2

h3
(QT Qb)T db

dλ
+

λ

h3
bT QT Qb . (34)

These expressions use that the matrix (P T P + λ
h3 Q

T Q) is symmet-
ric. Note that the expression for dTr/dθ does not involve db/dλ
and d2Tr/dθ2 only requires the first derivative of b with respect
to λ. Tr and its first and second derivatives are therefore obtained
from two systems of equations (31) and (32), rather than the three
equations (17), (28) and (29) required to calculate the derivatives
of R.

5.2 The algorithm

A nested grid procedure starting on a grid of coarseness 2l and
refining by a factor of 2 was constructed, using equation (19) to
periodically update the θ estimate. Convergence of the smoothing
parameter estimate on a given grid was determined by a criterion Q,
and the refinement process was terminated by a criterion D. The
algorithm is:

while D > tol1
q = 1
while Q > tol2

for m = 0 to 2

αl(θq) = Sl
υ1(α

(m)
l (θq), v

m
l )
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end
for n = 0 to 1

bl(θq) = Sl
υ1(b

(n)
l (θq), w

n
l )

end
θq+1 = − b

2c

q = q + 1
end
for m = 0 to 2

α
(m)
l−1 = Tlα

(m)
l

end
for n = 0 to 1

b
(n)
l−1 = Tlb

(n)
l

end
l = l − 1

end
q = 1
while Q > tol2

for m = 0 to 2

αl(θq) = Sl
υ1(α

(m)
l (θq), v

m
l )

end
for n = 0 to 1

bl(θq) = Sl
υ1(b

(n)
l (θq), w

n
l )

end
θq+1 = − b

2c

q = q + 1
end

where Sl is the sor iteration matrix on a grid of coarseness l, θq is
the qth update, υ1 is the number of smoothing iterations per update,
and α

(m)
l denotes the mth derivative of αl with respect to θ. The

matrix Tl is a prolongation operator corresponding to equation (8).
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This operator is of the form

1

4



3 1
1 3

3 1
1 3

. . .

3 1
1 3


.

The criterion Q was set to the sum of the absolute differences
between 4 consecutive θ updates. The resolution of the final grid
level l was determined by a tolerance on the criterion D, where

D =
‖gl‖
‖fl‖

. (35)

The function gl = fl − fr , where fr is the least squares restriction
of fl onto grid l + 1 . Thus ‖gl‖ is a measure of the fine scale infor-
mation contributed by the finer grid. If this measure was less than
the tolerance, it was considered unnecessary to continue refinement.
This criterion is an objective method of matching the grid resolution
to the scale of the data generation process. The results presented
below show that it is important to avoid iterating on unnecessarily
fine grids, because the conditioning of equations (17) deteriorates
as the resolution becomes finer. Poor conditioning greatly decreases
the efficiency of the algorithm, and can lead to non-convergence.

6 Performance

The algorithm was tested using a data set consisting of 101 noisy
data points randomly perturbed from a test function t(x) by values
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Figure 1: The simulated data, created from t(x) .

from a zero mean normal variable with standard deviation 0.5 . The
function t(x) was chosen to be

sin
2πx

180
+ 0.5 cos

4πx

180
, 0 ≤ x ≤ 360◦ . (36)

The data points were spaced at regular intervals of 3.6◦ . This data
set is shown in Figure 1.

The algorithm was run with the initial solution estimate set to
zero. The value of υ1 was optimised experimentally to 5 smoothing
iterations per update. The smoothing parameter was initialised to
the value that gave approximately equal weighting to the two terms
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Table 1: Performance of the algorithm on each grid.
l hl No. of updates flops
5 32 15 56 000
4 16 11 78 000
3 8 7 100 000
2 4 non- convergence

on the left hand side of (17). This setting was chosen in order
to give equal priority to smoothness and fidelity to the data, as
recommended by Hutchinson and Gessler [18].

Results for the algorithm are shown in Table 1. On the three
coarsest grids (levels 5, 4 and 3), the smoothing parameter estimate
converges. A higher number of updates was required on the coarsest
grid because the initial solution estimate contained no information.
Iteration quickly became more computationally expensive as the
grid resolution increased.

The failure of the algorithm to converge on level 2 is attributed
to the deterioration in the conditioning of system (17) on fine grids.
Poor conditioning leads to slow convergence of the sor iteration.
This results in higher error in the θ updates. It also means that the
solution estimate is slow to respond to changes in the smoothing
parameter estimate. The algorithm is therefore poorly synchronised,
and eventually diverges. The inability of basic iteration to alter
smooth components on fine grids is well known [1]. This emphasises
the importance of using basis elements that represent the smooth
components of the solution accurately on coarse grids.

Although it was found that ‖gl‖ was usually small enough to stop
refinement before synchronisation issues became a problem, it was
not the case for this particular random vector u. However, a first
derivative correction to the solution estimate restored convergent
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Table 2: Performance of the algorithm on each grid, using the first
derivative correction to the solution estimate.

l hl No. of updates flops
5 32 12 45 500
4 16 9 65 000
3 8 6 87 500
2 4 12 318 500

behaviour. The correction

α(θq+1) = α(θq) +
dα

dθ
(θq)(θq+1 − θq) (37)

was added following each update, where equation (28) was used to
estimate dα/dθ . The results in Table 2 show that the algorithm
converged on grid 2. Refinement did not continue beyond this grid
due to the criterion on ‖gl‖ .

A plot of the solution overlaid on the analytic solution is shown
in Figure 2. The statistics of the analytic thin plate spline and
the finite element solution are given in Table 3. The statistics pro-
duced by the algorithm are subject to considerable stochastic error
because the converged solution estimate depends on a stochastic es-
timate of Tr . The standard deviation of the Tr estimate is bounded
by (2/n)1/2 [13], which is high for a small data set. However, this
standard error is insignificant in the case of the large data sets for
which this algorithm was designed. For this analysis, the smoothing
parameter has been underestimated and too much fine scale struc-
ture has been incorporated. This is reflected by the lower R and
Tr values produced by the algorithm, in comparison to the ana-
lytic values.

A further reduction in computations was obtained by using a
finite difference approximation of d2gcv/dθ2 instead of using equa-
tion (24). This removed the need to iteratively solve for d2R/dθ2
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Figure 2: Solution estimate produced by the algorithm compared
to the analytic solution.

Table 3: Comparison of the summary statistics for the analytic
solution and the solution estimate obtained from the algorithm.

Analytic spline mingcv estimate
gcv R Tr gcv R Tr
0.221 14.75 82.1 0.226 12.64 75.1
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Table 4: Performance of the algorithm on each grid, using a finite
difference estimate of d2GCV/dθ2 .

l hl No. of updates flops
5 32 23 50 400
4 16 8 35 100
3 8 7 60 000
2 4 16 249 900

and d2Tr/dθ2 , almost halving the sor workload required for each
update. The finite difference procedure involved ‘searching’ empir-
ically for a minimum gcv by iterating using the initial θ setting
and periodically changing θ by 0.5 . When a minimum was detected
across 3 consecutive gcv values, the finite difference formula

dGCV
dθ

(θm−1)− dGCV
dθ

(θm+1)

θm−1 − θm+1

,

was used to estimate d2gcv/dθ2 , where θm is the θ estimate corre-
sponding to the minimum gcv value.

The results of this procedure are shown in Table 4. As expected,
the algorithm is almost twice as efficient, with only a few extra
updates required due to the reduced accuracy of the d2gcv/dθ2

calculation. Clearly more updates are required while the algorithm
searches for a minimum gcv, but this process is conducted on the
coarse grid, where the extra updates are relatively inexpensive.

7 Conclusion

This unidimensional analysis has lead to the construction of an effi-
cient algorithm for estimating minimum gcv univariate smoothing
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splines. The use of quadratic B-spline approximations on coarse
grids allows accurate estimates of the minimum gcv solution to
be obtained at low computational cost. Using finite difference ap-
proximation of the second derivative of the gcv, only 3 systems of
equations need to be solved iteratively. Convergence was acceler-
ated by using the estimate of dα/dθ to correct the solution estimate
after each θ update. These findings provide guidelines for the con-
struction of a similar algorithm to estimate minimum gcv bivariate
thin plate smoothing splines, constructed as tensor products of uni-
variate biquadratic splines.
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