
ANZIAM J. 44 (E) ppC354–C377, 2003 C354

Implementing an efficient elliptic curve
cryptosystem over GF (p) on a

smart card

Yvonne Hitchcock∗ Edward Dawson†

Andrew Clark‡ Paul Montague§

(Received 1 June 2001; revised 24 October 2002)

Abstract

Elliptic curve cryptosystems (eccs) are becoming more
popular because of the reduced number of key bits required
in comparison to other cryptosystems (for example, a 160 bit
ecc has roughly the same security as 1024 bit rsa). Eccs
are especially suited to smart cards because of the limited
memory and computational power available on these devices.

∗Information Security Research Centre, Queensland University of
Technology, GPO Box 2434, Brisbane 4001, Australia.
mailto:y.hitchcock@qut.edu.au

†as above. mailto:e.dawson@qut.edu.au
‡as above. mailto:a.clark@qut.edu.au
§Motorola Australia Software Centre, 2 Second Ave, Mawson Lakes,

SA 5095, Australia. mailto:pmontagu@asc.corp.mot.com
0See http://anziamj.austms.org.au/V44/CTAC2001/Hitc for this article,

c© Austral. Mathematical Soc. 2003. Published 1 April 2003. ISSN 1446-8735

mailto:y.hitchcock@qut.edu.au
mailto:e.dawson@qut.edu.au
mailto:a.clark@qut.edu.au
mailto:pmontagu@asc.corp.mot.com
http://anziamj.austms.org.au/V44/CTAC2001/Hitc

Contents C355

This paper discusses an optimized implementation of the el-
liptic curve Digital Signature Algorithm implemented over
the field GF (p) on a Motorola smart card. Algorithms for
point addition, point doubling and scalar multiplication are
compared according to their timings. The effects of differ-
ent memory usage, code size and speed tradeoffs which were
considered during the implementation are discussed. Also,
optimized point addition and doubling algorithms are pre-
sented.

Contents

1 Introduction C356

2 Field arithmetic C358
2.1 Selection of the modular reduction algorithm . . . C359
2.2 Modular inversion C360

3 Point coordinates C361

4 Scalar multiplication C365

5 Comparison of RSA with ECDSA C372

6 Conclusion C373

References C374

A ECDSA smart card simulation data C377

B Point addition and doubling algorithms C377

1 Introduction C356

1 Introduction

Elliptic curves were first proposed as a basis for public key cryptog-
raphy in the mid 1980s independently by Koblitz [11] and Miller [14].
Elliptic curves provide a public key cryptosystem based on the diffi-
culty of the elliptic curve discrete logarithm problem (defined later
in this section), which is so called because of its similarity to the dis-
crete logarithm problem (dlp) over the integers modulo a prime p.
This similarity means that most cryptographic procedures carried
out using a cryptosystem based on the dlp over the integers mod-
ulo p can also be carried out in an elliptic curve cryptosystem. An-
other benefit of eccs is that they can use a much shorter key length
than other public key cryptosystems to provide an equivalent level
of security. For example, 160 bit elliptic curve cryptosystems (eccs)
are believed to provide about the same level of security as 1024 bit
rsa [7, p.51]. Also, the rate at which ecc key sizes increase in
order to obtain increased security is much slower than the rate at
which integer based discrete logarithm (dl) or rsa key sizes must
be increased for the same increase in security. Eccs can also pro-
vide a faster implementation than rsa or dl systems, and use less
bandwidth and power [9]. These issues are crucial in lightweight
applications such as smart cards.

In the last few years, confidence in the security of eccs has also
risen, to the point where they have now been included or proposed
for inclusion in internationally recognized standards (specifically
ieee Std 1363-2000, wap (Wireless Application Protocol), ansi x9.62,
ansi x9.63 and iso cd 14888-3). Thus elliptic curve cryptography
is set to become an integral part of lightweight applications in the
immediate future.

An elliptic curve over a Galois field with p elements, GF (p) [12],
where p is prime and p > 3 may be defined as the points (x, y)

1 Introduction C357

satisfying the curve equation E : y2 = x3 + ax + b (mod p) , where
a and b are constants satisfying 4a3 + 27b2 6≡ 0 (mod p) . In ad-
dition to the points satisfying the curve equation E, a point at
infinity, φ, is also defined. With a suitable definition of addition
and doubling of points [3], this enables the points of an elliptic
curve to form a group with addition and doubling of points being
the group operation, and the point at infinity being the identity el-
ement. We then further define scalar multiplication of a point P by
a scalar k as being the result of adding the point P to itself k times
(kP = P + P + · · ·+ P (k times)) . The elliptic curve discrete
logarithm problem is then defined as follows: Given the prime mod-
ulus p, the curve constants a and b and two points P and Q, find
a scalar k such that Q = kP . This problem is infeasible for secure
elliptic curves, and thus scalar multiplication is the basic crypto-
graphic operation of an elliptic curve.

In order to achieve an efficient implementation, firstly efficient
field arithmetic (modular addition, subtraction, multiplication and
inversion) must be available. These operations are then used in
the algorithms for addition and doubling of points. In turn, the
addition and doubling operations must be efficient, in order for the
scalar multiplication which uses them to be efficient. It is possible
to add and double points in various coordinate systems. The choice
of coordinate system has a considerable impact on the final speed
of the scalar multiplication operation.

In this paper we investigate the efficient implementation of an
ecc over the field GF (p) (where p is prime) on a smart card. In
the past, much research has focused on curves over the Galois field
with 2m elements, GF (2m), because it is possible to create efficient
hardware implementations [6]. However, because of the speed ad-
vantages of elliptic curves over the field GF (p) compared to GF (2m)
when a crypto coprocessor for modular arithmetic is available [8],

2 Field arithmetic C358

and because of patent issues associated with curves over GF (2m) ,
this research has investigated curves over GF (p) .

The smart card targeted for the project is the Motorola M-Smart
JupiterTM smart card [15] based on Java CardTM 2.1 technology and
an arm processor [1] with a word size of 32 bits, 64 kb of rom,
32kb of eeprom, 3kb ram and a modular arithmetic accelerator.
All of the ecc operations were implemented in the C programming
language, and testing was performed on a simulation of the smart
card utilizing the arm Software Development Toolkit.

We include algorithms for point addition and doubling in vari-
ous coordinate systems and give details of the various speed, ram
usage, parameter and code size tradeoffs that are possible. Also
included are the relative times for ecdsa [10] and rsa [13, pp.285-
291] signature and verification operations of equivalent security. All
pc timings given in the paper were performed on a Pentium iii
450 mhz.

2 Field arithmetic

In order to achieve an efficient implementation of an ecc, it is cru-
cial to have an efficient implementation of the underlying field arith-
metic, which in this case is field arithmetic for GF (p) . The field
operations of modular addition and subtraction are relatively fast
and easily implemented. However, modular multiplication (which
requires a modular reduction) and modular inversion are much more
time consuming. Various methods of either speeding up or avoiding
these operations have been published. These are discussed in the
following subsections.

2 Field arithmetic C359

2.1 Selection of the modular reduction
algorithm

Two efficient methods of modular reduction that are often consid-
ered for implementation and may be used with any modulus are
Barrett reduction and Montgomery reduction [4] [13, pp.599–604].
Each of these methods requires a precomputation that depends on
the modulus. The efficiency of both methods is due to the fact that
the only divisions performed can be implemented as right shifts
which are quite fast. However, Montgomery reduction also requires
the operands to be converted to a special Montgomery form. If
the precomputation and conversion time is ignored, Montgomery
reduction is slightly faster than Barrett reduction, and both are
faster than the classical algorithm [13, p.600].

Another modular reduction method which has previously been
successfully adopted in a software only implementation by Brown
et al. in [5] in order to increase the speed of the ecc is to use a
modulus with a special form, such as the nist primes [17], enabling
a very fast but specialized reduction algorithm. In fact, Brown
et al. achieved reduction timings that were between 6% and 33%
of the time required for Barrett reduction, depending on the prime
used and whether assembly language was used. Eccs using the
nist primes were considered in this research, but they did not give
favourable timings because the coprocessor could not be effectively
utilized in such an implementation. For example, for a 224 bit mod-
ulus, multiplication without reduction in software (which is neces-
sary before the reduction takes place) took 4.9 times as long as a
hardware modular multiplication. Also, the 224 bit modular re-
duction in software took 1.5 times as long as a hardware modular
multiplication.

A pseudo-Mersenne prime [2] can also be used to speed up the

2 Field arithmetic C360

reduction algorithm. A fast reduction algorithm for primes of this
form is given in [13, p.605]. However, as for the nist primes, in or-
der to perform a modular multiplication, a multiplication without
reduction is first required which takes much longer than a hard-
ware modular multiplication on the smart card. Because the algo-
rithms for special primes did not give any speed advantages on the
smart card, the coprocessor was used to perform the modular arith-
metic and random primes were used to define the elliptic curves that
were used.

2.2 Modular inversion

Finding multiplicative inverses in the field GF (p) (required by eccs
over GF (p)) is extremely slow (taking about 40 to 65 times as long
as Barrett reduction [5]) and is generally avoided as much as possi-
ble. The use of coordinate systems other than the Affine coordinate
system greatly reduces the number of inversions required in the op-
erations of the ecc (see Section 3). However, an efficient inversion
algorithm is still needed for those times when inversion is required
such as during the creation of a dsa digital signature by one party,
verification of the validity of that signature by another party or at
the end of a scalar multiplication to convert the coordinates back
to Affine coordinates. Three inversion algorithms were considered
for use in this project, the binary extended gcd (begcd) algo-
rithm [13, pp.608–610], the extended Euclidean algorithm (eea) [13,
p.67] and the exponentiation method (from Fermat’s (little) theo-
rem [13, p.69]), a−1 (mod p) ≡ ap−2 (mod p) . The eea involves
multi-precision divisions, which are quite slow. In order to avoid
such divisions, the begcd algorithm uses right shifts (which are
fast), but requires more iterations. The speed in software of both
these methods was estimated for the smart card and compared to
that of the exponentiation method. Because the exponentiation

3 Point coordinates C361

method was available in hardware, it required minimal code space
and did not decrease performance compared to the eea and begcd
algorithms which were only available in software. For these reasons,
the exponentiation method was chosen as the inversion algorithm.

3 Point coordinates

One of the crucial decisions when implementing an efficient ellip-
tic curve cryptosystem over GF (p) is deciding which point coor-
dinate system to use. The point coordinate system used for ad-
dition and doubling of points on the elliptic curve determines the
efficiency of these routines, and hence the efficiency of the basic
cryptographic operation, scalar multiplication. This section anal-
yses the efficiencies of the different coordinate systems considered.
These coordinate systems were taken from [7] and are Affine (where
a point is represented as (xA, yA) as in Section 1), Projective (rep-
resented as (X, Y, Z) where xA = XZ−1 and yA = Y Z−1), and Ja-
cobian, Modified Jacobian and Chudnovsky Jacobian (represented
as (X, Y, Z) , (X,Y, Z, aZ4) and (X, Y, Z, Z2, Z3) respectively where
xA = XZ−2 and yA = Y Z−3). Note that [7] does not give detailed
algorithms, and considerable effort has been spent minimizing the
number of temporary variables required by each algorithm. De-
tailed addition and doubling algorithms that have been optimized
to reduce the number of temporary variables for Jacobian, Chud-
novsky Jacobian and Modified Jacobian coordinates are given in
Appendix B, and descriptions and formulae for operations using
these coordinate systems in [7] and [3].

Affine coordinates are the simplest to understand and are used
for communication between two parties because they require the
lowest bandwidth. However, the modular inversions required when

3 Point coordinates C362

Table 1: Point conversion complexity: M is squaring or multipli-
cation; and I is inversion.
From \ To Affine Projective Jacobian Chudnovsky Modified
Affine - - - - -
Projective 2M + I - 2M + I 2M + I 2M + I
Jacobian 4M + I 4M + I - 2M 3M
Chudnovsky 4M + I 4M + I - - 3M
Modified 4M + I 4M + I - 2M -

adding and doubling points which are represented using Affine co-
ordinates cause them to be highly inefficient for use in addition and
doubling of points. The other coordinate systems require at least
one extra value to represent a point and do not require the use of
modular inversions in point addition and doubling, but extra mul-
tiplications and squarings are required instead.

Cohen et al. [7] recommended the idea of mixed coordinates,
where the inputs and outputs to point additions and doublings
may be in different coordinates. This can be very efficient when
scalar multiplication is implemented with the base point stored in
Affine coordinates.

In order to use mixed coordinates it is sometimes necessary to
convert a point representation from one coordinate system to an-
other to have the input in the required format for the addition or
doubling algorithm. Table 1 shows that conversion from Affine co-
ordinates to any of the other coordinate systems is very efficient be-
cause the conversions only consist of setting all of the Z, Z2 and Z3

coordinates to one and the aZ4 coordinate to a (the elliptic curve
parameter). Conversion to or from Projective coordinates is ineffi-
cient because of the inversion required, as is converting from any of
the other coordinate systems to Affine coordinates. However, con-
versions among the three Jacobian variants are quite efficient, and

3 Point coordinates C363

these are therefore used in mixed coordinate scalar multiplication.

Table 2 contains the times for addition and doubling in various
coordinate systems. All calculations were performed for curves over
a 160 bit prime. The first column specifies the coordinates used in
the algorithm. For addition, the first two letters indicate the coordi-
nates of the two input points. The third letter indicates the output
coordinates. For example, ajm is an addition algorithm with input
points in Affine and Jacobian coordinates and an output point in
Modified Jacobian coordinates. For doubling, the first letter indi-
cates the input point coordinates and the second letter indicates the
output point coordinates. For example, mj is a doubling algorithm
with an input point in Modified Jacobian coordinates and an output
point in Jacobian coordinates. Because three different Jacobian ad-
dition algorithms have been used (see Section 4 and Appendix B),
these are distinguished with a number at the end of the acronym.
The two different Jacobian doubling algorithms are distinguished in
the same way.

See that when the actual Pentium timings and the smart card
estimates are sorted according to speed, they are mostly in the same
order, indicating that the estimations are reasonable. The table
also gives the number of 160 bit variables that are required for each
algorithm. Lastly, it gives times for converting Jacobian, Modified
Jacobian or Chudnovsky Jacobian points into either Chudnovsky
Jacobian or Modified Jacobian points.

Although the aac, aam, aj and am operations are very fast,
these methods are not very useful because the output of an addition
or doubling (used as input to these procedures) must be converted
to Affine coordinates which is computationally intensive.

3 Point coordinates C364

Table 2: Addition and Doubling Efficiencies

Acronym A
dd

Su
bt

ra
ct

M
ul

ti
pl

y

Sq
ua

re

O
th

er

M
ul

.
+

Sq
ua

re

P
en

ti
um

T
im

in
gs

(m
s)

Sm
ar

t
ca

rd
E

st
im

at
e

N
um

be
r

of V
ar

ia
bl

es

Point Addition
AAC 1 6 4 2 0 6 0.027 46% UC
AAM 1 6 5 3 0 8 0.035 54% UC
AJJ2 0 7 8 3 0 11 - 68.05% 8
APP 1 6 9 2 0 11 - 68.17% UC
AJJ1 1 6 8 3 0 11 - 68.17% 8
ACC 0 7 8 3 0 11 - 68.84% 8
AJM−3 2 8 8 5 0 13 - 77.67% 8
AMM−3 2 8 8 5 0 13 - 77.67% 8
AJM 0 7 9 5 0 14 - 78.62% 9∗

AMM 0 7 9 5 0 14 - 78.62% 9∗

AJJ3 4.5 6 8 3 Shift 11 - 83.50% 7
CCC 0 7 11 3 0 14 0.059 84.48% 11
PPP 1 6 12 2 0 14 0.059 86.93% UC
JJJ1 1 6 12 4 0 16 0.067 91.90% 9
JJM 0 7 13 6 0 19 0.077 100.00% 10∗

MMM 0 7 13 6 0 19 0.078 100.00% 11∗

AAA 0 6 2 1 Inv. 3 0.237 640.40% UC
Point Doubling

AJ 5 3 5 2 0 7 0.030 UC UC
MJ 8 4 3 4 0 7 0.033 50.03% 6
MM 9 4 4 4 0 8 0.038 58.00% 6
JJ2−3 8 5 4 4 0 8 - 58.67% 6
JJ1−3 5 5 4 4 Shift 8 - 59.75% 5
AM 5 3 5 4 0 9 0.038 UC UC
CC 9 4 5 6 0 11 0.049 65.84% 6∗

JJ1 5 4 4 6 Shift 10 0.044 67.91% 6∗

PP 14 3 7 5 0 12 0.055 70.13% UC
AA 4 4 2 2 Inv. 4 0.240 653.71% UC

Point Conversion
J,M to C 0 0 1 1 0 2 0.008 8.87%
J,C to M 0 0 1 2 0 3 0.011 12.51%

A Affine −3 Optimized for a = p− 3 [3, pp.59-60]
P Projective ∗ Including the a parameter
J Jacobian 1, 2 or 3 Different versions for the
C Chudnovsky Jacobian same coordinate system
M Modified Jacobian UC Uncalculated because inefficient

4 Scalar multiplication C365

4 Scalar multiplication

Scalar multiplication is the basic cryptographic operation of an ecc,
and consists of a series of point additions and doublings. The scalar
multiplication algorithm chosen for the smart card implementation
was the binary method [3, p.63], because it does not require a pre-
computation and therefore uses less memory, unlike other more effi-
cient methods. One option when implementing the binary method is
to use a signed representation of the scalar such as the non-adjacent
form (naf) [3, pp.67–68]. Because the naf represents a scalar with a
smaller number of non-zero digits, a lower number of point additions
is required in a binary scalar multiplication using this representation
since each non-zero digit corresponds to one point addition. The es-
timated scalar multiplication figures in Table 3 indicate that using a
naf scalar should make the scalar multiplication about 10% faster
than when using an unsigned scalar. The values in Table 5 show an
increase in efficiency of about 6% for the time required for a person
to digitally sign a value and 4% to 17% (depending on the settings
used) for the time required for another person to verify the validity
of the digital signature.

Another option is to use the two-in-one variant of the binary
algorithm that computes k1P + k2Q , where k1 and k2 are scalars
and P and Q are points on the curve [13, p. 618], [18]. If there
is insufficient memory to store P + Q or P − Q, these points need
not be stored, but may be computed each time they are needed.
However, this can cause the algorithm to be slower, depending on
the coordinates in which the temporary points P +Q and P −Q are
stored and the time taken to convert the points to these coordinates.
We estimate that a two-in-one scalar multiplication takes about
60% to 70% of the time that two separate scalar multiplications take,
depending on the options chosen. The data in Table 5 indicates that
dsa verification using this method actually takes 65% to 70% of the

4 Scalar multiplication C366

Table 3: Estimated time for signed (naf) and unsigned scalar
multiplication on the smart card using the Binary method

Addition Doubling Naf Unsigned
Algorithm Algorithm a = p− 3 a 6= p− 3 a = p− 3 a 6= p− 3
AJM-3 MJ/MM 76.56% 87.22%
AJJ2 JJ2-3 76.68% 87.08%
AJM MJ/MM 76.85% 87.67%
AJJ1 JJ1-3 77.74% 88.15%
AMM-3 MM 79.03% 90.95%
AMM MM 79.33% 91.40%
AJJ1 MM 79.96% 92.36%
ACC JJ1-3 80.70% 92.61%
AJJ3 JJ1-3 82.49% 95.32%
ACC MM 82.92% 96.82%
JJM MJ/MM 83.48% 97.67%
ACC CC 83.72% 94.20%
AMM-3 JJ1-3 84.56% 98.45%
AJJ1 JJ1 85.48% 95.84%
JJJ MM 87.32% 101.40%
AJJ1 CC 86.26% 98.03%
JJJ MM 87.32% 103.46%
APP PP 87.57% 97.92%
CCC MM 87.77% 104.14%
ACC JJ1 88.43% 100.30%
CCC CC 88.57% 101.52%
AJJ3 JJ1 90.23% 103.01%
AMM JJ1 92.59% 106.58%
JJJ JJ1 92.83% 106.94%
CCC JJ1 93.28% 107.62%
AMM CC 93.37% 108.77%
PPP PP 93.39% 106.70%
JJJ CC 93.61% 109.13%
MMM JJ1 99.22% 116.58%
MMM CC 100.00% 118.78%

4 Scalar multiplication C367

time taken when not using the two-in-one scalar multiplication.

The basic coordinate system chosen for the smart card imple-
mentation was the mixed Jacobian and Modified Jacobian coordi-
nate system, with one input to the addition in Affine coordinates
(ajm/mj/mm). This coordinate system was chosen because the es-
timates in Table 3 indicate that it is the most efficient coordinate
system to use if a 6= p − 3 . One of the inputs to the addition was
chosen to be Affine because of the faster implementation available
and because fewer variables were required in this case.

In order to see how much efficiency could be gained by setting
a = p − 3 , the ajm addition was modified slightly to create the
ajm-3/mj/mm coordinates. Because Jacobian coordinates allow a
further speedup from setting a = p− 3 which is not available when
using Modified Jacobian coordinates, the ajm-3/mj/mm algorithms
were further modified to allow this speedup and to use only Jacobian
coordinates, resulting in the ajj2/jj2-3 coordinates.

Because of the limited amount of memory available, Jacobian
coordinates were also implemented in order to see how much speed
needed to be sacrificed in order to use fewer variables. Two differ-
ent addition algorithms were available—one that used three tempo-
rary variables but was faster (ajj1), and one that used two tempo-
rary variables but was slower (ajj3). These algorithms were imple-
mented for a 6= p−3 and also optimized for a = p−3 , giving the four
sets of coordinates ajj1/jj1, ajj1/jj1-3, ajj3/jj1 and ajj3/jj1-3.
Figure 1 shows the number of variables that are saved for each co-
ordinate system and scalar multiplication setting.

Figure 2 displays the running time (as a percentage of the longest
running time) of the ecdsa signature and verification for each of
the options that was implemented. The settings used were signed or
unsigned scalars (naf or no naf), two separate multiplications or

4 Scalar multiplication C368

0

1

2

3

4

5

6

7

8

9

AJM
-3

/M
J/M

M

AJJ
2/JJ

2-3

AJM
/M

J/M
M

AJJ
1/JJ

1-3

AJJ
1/JJ

1

AJJ
3/JJ

1-3

AJJ
3/JJ

1

Coordinate system

N
u

m
b

er
 o

f
va

ri
ab

le
s

sa
ve

d

ver. 2muls, no NAF;
ver. 2-in-1, no NAF

ver. 2muls, NAF

ver. 2-in-1, no NAF, 1 pt;
ver. 2-in-1, NAF

ver. 2-in-1, NAF, 1 pt;
sig. no NAF

ver. 2-in-1, NAF, 2pts;
sig. NAF

Figure 1: Number of variables saved for the different options for
ecdsa

4 Scalar multiplication C369

a two-in-one multiplication for the verification, and when a two-in-
one multiplication was performed, whether there were two tempo-
rary points calculated at the beginning of the scalar multiplication
(P + Q and P − Q), one point (P + Q for no naf and P − Q for
naf) or no points. Note that the temporary points were stored in
Affine format in order to be able to guarantee one Affine input to
the addition algorithm; however, the time to calculate the points
may outweigh any time saved. Although storing the points in Ja-
cobian coordinates may give a faster implementation by avoiding
the inversion per point needed to convert them to Affine, this op-
tion was not implemented because of the increased code size for the
addition and increased number of variables required. In any case,
the time taken to calculate each point is only about 2% of the total
verification time (this is 1% on the graph where 100% is the slowest
verification speed), and thus storing the points in Jacobian format
would not greatly increase efficiency, bearing in mind that even less
than the 2% of verification time per point would be saved because
of the slower addition algorithm being used.

Figure 2 shows that the ajm/mj/mm coordinates are best when
a 6= p − 3 . When a = p − 3 and the naf form of the scalar
is used, the ajm-3/mj/mm coordinates are fastest. Using a naf
scalar always gives a faster result than an unsigned scalar and the
two-in-one multiplication algorithm enables a faster verification.

Figure 3 gives the code size for each of the different implemen-
tations. Because the interface assumes that all points are passed to
it in compressed form (that is, an Affine x-coordinate and one byte
to specify the sign of the y-coordinate and point format), a point
uncompression procedure was implemented. The main part of this
procedure is the square root algorithm, which is long when p ≡ 1
(mod 4) . It is possible to save a further 528 bytes of code space
from any of the implementations by omitting the point uncompres-

4 Scalar multiplication C370

40%

50%

60%

70%

80%

90%

100%

AJM
-3

/M
J/M

M

AJJ
2/JJ

2-3

AJM
/M

J/M
M

AJJ
1/JJ

1-3

AJJ
1/JJ

1

AJJ
3/JJ

1-3

AJJ
3/JJ

1

Coordinate system

R
el

at
iv

e
sp

ee
d

ver. 2muls, no NAF
ver. 2muls, NAF
ver. 2-in-1, no NAF
ver. 2-in-1, no NAF, 1 pt
ver. 2-in-1, NAF
ver. 2-in-1, NAF, 1 pt
ver. 2-in-1, NAF, 2pts
sig. no NAF
sig. NAF

Figure 2: Ecdsa signature and verification timings on the smart
card simulator

4 Scalar multiplication C371

5000

5100

5200

5300

5400

5500

5600

5700

5800

5900

6000

AJM
-3

/M
J/M

M

AJJ
2/JJ

2-3

AJM
/M

J/M
M

AJJ
1/JJ

1-3

AJJ
1/JJ

1

AJJ
3/JJ

1-3

AJJ
3/JJ

1

Coordinate system

C
o

d
e

S
iz

e
(b

yt
es

) 2-in-1, NAF, 1 pt
2-in-1, NAF, 2pts
2-in-1, NAF
2muls, NAF
2-in-1, no NAF, 1 pt
2-in-1, no NAF
2muls, no NAF

Figure 3: Code size for ecdsa signature and verification for the
smart card.

5 Comparison of RSA with ECDSA C372

sion procedure for p ≡ 1 (mod 4) and not using these curves.

The optimal choice of coordinate system and scalar multiplica-
tion algorithm depends on the importance of speed compared to
code size and minimal ram usage. If speed is considered the most
important, the best compromise may be to choose a signed scalar
with two-in-one multiplication and no temporary points stored and
using either the ajm/mj/mm or ajj2/jj2-3 coordinates, whichever
is appropriate. This gives good signature and verification speeds,
and saves a medium amount of code space and variables.

5 Comparison of RSA with ECDSA

Table 4 compares the speed of ecdsa (Elliptic Curve Digital Signa-
ture Algorithm) signing and verifying (using the two-in-one scalar
multiplication algorithm with two precomputed points, a signed
scalar and ajm/mj/mm coordinates) to the speed of rsa signing
and verifying on the smart card and the publicly available miracl
library [16] on a Pentium. It should be noted that the rsa verifica-
tion times are faster because a small exponent has been used. The
table gives the times as a percentage of the ec signature time on
that platform. These results demonstrate that the ratio of the time
taken for the ec operations to the time taken for the rsa signature
is about the same for both the smart card and the Pentium. How-
ever, on the smart card, the rsa signature was mostly performed in
hardware, whereas a large number of the ec computations had to
be performed in software, which would slow down the ec. That the
rsa signature time on the smart card is longer than the time for
the Pentium shows that we have quite an efficient implementation
of ecdsa verification and signing on the smart card.

6 Conclusion C373

Table 4: Ecdsa and Rsa Time Comparison on Smart Card and
Pentium

Algorithm Miracl Library Our library
Pentium III 450 mhz Smart Card

160 bit ecdsa Signature 100% 100%
Verification 121% 122%

1024 bit rsa Signature 220% 236%
Verification 29% 24%

6 Conclusion

We have investigated the efficiency of various coordinate systems
and scalar multiplication algorithms available when implementing
an elliptic curve cryptosystem over the field GF (p) on a smart card
with a coprocessor for support of modular arithmetic operations.
Several coordinate systems have been implemented and timed, as
well as scalar multiplication algorithms using signed and unsigned
scalars to find k1P and k1P + k2Q (where k1 and k2 are scalars and
P and Q are points on the curve). The code size and the number
of variables (where each variable is the same size as the modulus)
required for each different implementation have also been investi-
gated. A fast coordinate system and scalar multiplication algorithm
with medium code size and variable usage have been recommended.
The data in this paper is also sufficient to make an informed choice
of algorithm for other requirements. Algorithms for addition and
doubling in Jacobian, Chudnovsky Jacobian and Modified Jacobian
coordinates with a minimum number of temporary variables are pre-
sented in Appendix B, and the choice of the prime p and modular
reduction and inversion algorithms discussed.

References C374

Acknowledgement: this research is part of an arc spirt project
(C10024103) undertaken jointly by Queensland University of Tech-
nology and Motorola.

References

[1] Atmel Corporation. Motorola chooses Atmel technology for
its M-Smart Jupiter smart card platform, Press release.
http://www.armltd.co.uk/sitearchitek/news.ns4/

916d9b71de2065938025694400358dec/

cd91a1cbf6c291228025692f002a0018!OpenDocument

(accessed 09/08/2001), 23/06/1999. C358

[2] Daniel V. Bailey and Christof Paar. Optimal extension fields
for fast arithmetic in public-key algorithms. In Advances in
Cryptology—Crypto ’98, volume 1462 of Lecture Notes in
Computer Science, pages 472–485. Springer-Verlag, 1998.
C359

[3] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves
in Cryptography, volume 265 of London Mathematical Society
Lecture Note Series. Cambridge University Press, Cambridge,
1999. C357, C361, C365

[4] Antoon Bosselaers, René Govaerts, and Joos Vandewalle.
Comparison of three modular reduction functions. In
Advances in Cryptology—Crypto ’93, volume 773 of Lecture
Notes in Computer Science, pages 175–186. Springer-Verlag,
1994. C359

[5] M. Brown, D. Hankerson, J. López, and A. Menezes. Software
implementation of the NIST elliptic curves over prime fields.

http://www.armltd.co.uk/sitearchitek/news.ns4/916d9b71de2065938025694400358dec/cd91a1cbf6c291228025692f002a0018!OpenDocument
http://www.armltd.co.uk/sitearchitek/news.ns4/916d9b71de2065938025694400358dec/cd91a1cbf6c291228025692f002a0018!OpenDocument
http://www.armltd.co.uk/sitearchitek/news.ns4/916d9b71de2065938025694400358dec/cd91a1cbf6c291228025692f002a0018!OpenDocument

References C375

In Topics in Cryptology—CT-RSA 2001, volume 2020 of
Lecture Notes in Computer Science, pages 250–265.
Springer-Verlag, 2001. http://www.cacr.math.uwaterloo.
ca/~ajmeneze/research.html (accessed 23/01/2001). C359,
C360

[6] Certicom Corp. The elliptic curve cryptosystem for smart
cards, The seventh in a series of ECC white papers.
http://www.certicom.com/research.html (accessed
04/05/2000), May, 1998. C357

[7] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient
elliptic curve exponentiation using mixed coordinates. In
Advances in Cryptology—ASIACRYPT ’98, Proceedings,
volume 1514 of Lecture Notes in Computer Science, pages
51–65. Springer-Verlag, 1998. C356, C361, C362, C377

[8] Erik De Win, Serge Mister, Bart Preneel, and Michael
Wiener. On the performance of signature schemes based on
elliptic curves. In Algorithmic Number Theory: Third
International Symposium, ANTS-III, Proceedings, volume
1423 of Lecture Notes in Computer Science, pages 252–266.
Springer-Verlag, 1998. C357

[9] Toshio Hasegawa, Junko Nakajima, and Mitsuru Matsui. A
practical implementation of elliptic curve cryptosystems over
GF (p) on a 16-bit microcomputer. In Public Key
Cryptography – PKC ’98,Proceedings, volume 1431 of Lecture
Notes in Computer Science, pages 182–194. Springer-Verlag,
1998. C356, C377

[10] IEEE. IEEE Std 1363-2000, IEEE standard specifications for
public-key cryptography.
http://ieeexplore.ieee.org/login.html (accessed
15/05/2001), 2000. C358

http://www.cacr.math.uwaterloo.ca/~ajmeneze/research.html
http://www.cacr.math.uwaterloo.ca/~ajmeneze/research.html
http://www.certicom.com/research.html
http://ieeexplore.ieee.org/login.html

References C376

[11] Neil Koblitz. Elliptic curve cryptosystems. In Mathematics of
Computation, volume 48, pages 203–209, 1987. C356

[12] Rudolf Lidl and Harald Niederreiter. Introduction to finite
fields and their applications. Cambridge University Press,
1986. C356

[13] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC Press,
1996. C358, C359, C360, C365

[14] Victor S. Miller. Use of elliptic curves in cryptography. In
Advances in Cryptology—Proceedings of Crypto 85, volume
218 of Lecture Notes in Computer Science, pages 417–426.
Springer-Verlag, 1986. C356

[15] Motorola, Inc. Motorola ships industry’s first 32-bit RISC
Java Card 2.1TM technology/Visa Open Platform 2.0 card,
Press release.
http://www.mot.com/LMPS/pressreleases/page483.htm

(accessed 08/08/2001), 28/03/2000. C358

[16] Multiprecision Integer and Rational Arithmetic C/C++
Library (MIRACL). http://indigo.ie/~mscott/ (accessed
23/06/2000). C372

[17] National Institute of Standards and Technology. Digital
signature standard (DSS). Technical report, FIPS Publication
186-2, January 2000.
http://www.csrc.nist.gov/publications/fips/ (accessed
07/06/2001). C359

[18] Huapeng Wu, M. Anwarul Hasan, and Ian F. Blake. Efficient
computation of multiple points for elliptic curve
cryptosystems. In 1998 IEEE International Symposium on
Information Theory, Proceedings, page 49, 1998. C365

http://www.mot.com/LMPS/pressreleases/page483.htm
http://indigo.ie/~mscott/
http://www.csrc.nist.gov/publications/fips/

A ECDSA smart card simulation data C377

A ECDSA smart card simulation data

Table 5 displays the ecdsa verification and signature timings, code
size and number of variables saved (not used) for each different effi-
ciency option. This data is also displayed graphically in Figures 1,
2 and 3.

B Point addition and doubling

algorithms

Tables 6, 7 and 8 give the algorithms for addition and doubling in
Jacobian coordinates and variants. The jjj3, ajj3, jj1 and jj1-3
algorithms have been taken from [9]. However, checks have been
added to ensure that the point at infinity is not one of the points
being added and that the points being added are not identical or
each other’s negative.

The other algorithms are derived from the formulae given in [7].
The two different Jacobian addition algorithms have been included
because jjj1 and ajj1 are faster, but jjj3 and ajj3 require one less
variable. Each algorithm assumes that the output will overwrite an
input point.

B Point addition and doubling algorithms C378

Table 5: Code size, number of variables saved and timings for the
smart card

2
-i
n
-1

M
u
lt

ip
li
c
a
ti

o
n

N
u
m

b
e
r

o
f

T
e
m

p
o
ra

ry
P
o
in

ts

S
ig

n
e
d

(N
A

F
)

S
c
a
la

r
U

se
d

A
d
d
it

io
n

A
lg

o
ri

th
m

D
o
u
b
li
n
g

A
lg

o
ri

th
m

(s
)

E
C

D
S
A

S
ig

n
a
tu

re

T
im

e
(S

im
u
la

te
d
)

E
C

D
S
A

V
e
ri

fi
c
a
ti

o
n

T
im

e
(S

im
u
la

te
d
)

C
o
d
e

S
iz

e
(b

y
te

s)

V
a
ri

a
b
le

s
S
a
v
e
d

in
S
ig

n
a
tu

re

V
a
ri

a
b
le

s
S
a
v
e
d

in
V
e
ri

fi
c
a
ti

o
n

no 0 no AJM-3 MJ/MM 42.9% 84.3% 5324 3 7
no 0 no AJJ2 JJ2-3 42.3% 86.1% 5060 3 7
no 0 no AJM MJ/MM 42.7% 85.9% 5280 2 6
no 0 no AJJ1 JJ1-3 44.4% 90.0% 5068 3 7
no 0 no AJJ1 JJ1 47.7% 93.7% 5120 2 6
no 0 no AJJ3 JJ1-3 46.9% 96.1% 5156 4 8
no 0 no AJJ3 JJ1 51.2% 100.0% 5204 3 7
no 0 yes AJM-3 MJ/MM 40.1% 77.1% 5640 1 6
no 0 yes AJJ2 JJ2-3 40.7% 78.3% 5380 1 6
no 0 yes AJM MJ/MM 40.3% 76.9% 5592 0 5
no 0 yes AJJ1 JJ1-3 42.6% 82.3% 5388 1 6
no 0 yes AJJ1 JJ1 45.0% 86.6% 5436 0 5
no 0 yes AJJ3 JJ1-3 44.6% 86.3% 5472 2 7
no 0 yes AJJ3 JJ1 47.2% 90.5% 5520 1 6
yes 0 no AJM-3 MJ/MM 42.9% 59.0% 5332 3 7
yes 0 no AJJ2 JJ2-3 42.4% 60.0% 5068 3 7
yes 0 no AJM MJ/MM 42.7% 60.9% 5288 2 6
yes 0 no AJJ1 JJ1-3 44.4% 62.1% 5076 3 7
yes 0 no AJJ1 JJ1 47.8% 63.5% 5124 2 6
yes 0 no AJJ3 JJ1-3 46.9% 68.2% 5164 4 8
yes 0 no AJJ3 JJ1 51.3% 69.4% 5212 3 7
yes 0 yes AJM-3 MJ/MM 40.2% 50.6% 5712 1 5
yes 0 yes AJJ2 JJ2-3 40.8% 50.9% 5456 1 5
yes 0 yes AJM MJ/MM 40.2% 50.6% 5664 0 4
yes 0 yes AJJ1 JJ1-3 42.7% 53.0% 5464 1 5
yes 0 yes AJJ1 JJ1 45.1% 56.1% 5512 0 4
yes 0 yes AJJ3 JJ1-3 44.7% 57.7% 5548 2 6
yes 0 yes AJJ3 JJ1 47.3% 60.1% 5596 1 5
yes 1 no AJM-3 MJ/MM 42.9% 52.3% 5380 3 5
yes 1 no AJJ2 JJ2-3 42.4% 52.4% 5112 3 5
yes 1 no AJM MJ/MM 42.7% 52.5% 5332 2 4
yes 1 no AJJ1 JJ1-3 44.4% 55.1% 5120 3 5
yes 1 no AJJ1 JJ1 47.8% 57.7% 5172 2 4
yes 1 no AJJ3 JJ1-3 46.9% 59.9% 5208 4 6
yes 1 no AJJ3 JJ1 51.2% 62.2% 5256 3 5
yes 1 yes AJM-3 MJ/MM 40.1% 49.4% 5924 1 3
yes 1 yes AJJ2 JJ2-3 40.8% 50.0% 5652 1 3
yes 1 yes AJM MJ/MM 40.3% 49.3% 5876 0 2
yes 1 yes AJJ1 JJ1-3 42.7% 52.2% 5660 1 3
yes 1 yes AJJ1 JJ1 45.1% 54.6% 5704 0 2
yes 1 yes AJJ3 JJ1-3 44.7% 56.9% 5740 2 4
yes 1 yes AJJ3 JJ1 47.2% 58.4% 5792 1 3
yes 2 yes AJM-3 MJ/MM 40.0% 49.5% 5828 1 1
yes 2 yes AJJ2 JJ2-3 40.7% 50.2% 5548 1 1
yes 2 yes AJM MJ/MM 40.3% 49.2% 5780 0 0
yes 2 yes AJJ1 JJ1-3 42.6% 52.2% 5556 1 1
yes 2 yes AJJ1 JJ1 45.1% 55.0% 5612 0 0
yes 2 yes AJJ3 JJ1-3 44.6% 56.5% 5640 2 2
yes 2 yes AJJ3 JJ1 47.2% 58.4% 5696 1 1

B Point addition and doubling algorithms C379

Table 6: Jacobian 1 and 3 Addition and Jacobian 1 Doubling
JJJ1 and AJJ1

Addition
JJJ3 and AJJ3

Addition
JJ1 and JJ1 − 3

Doubling
Q = Q + P , where
Q = (X, Y, Z) and
P = (X2, Y2) or (X2, Y2, Z2)

Q = Q + P , where
Q = (X, Y, Z) and
P = (X2, Y2) or (X2, Y2, Z2)

Q = Q + Q, where
Q = (X, Y, Z)

if (P == φ) return Q
if (Z == 0){

Q = P
return Q

}
if (P is not Affine and Z2 6= 1)

T1 = Z2
2

X = X ∗ T1
T1 = Z2 ∗ T1
Y = Y ∗ T1

T1 = Z2

T2 = X2 ∗ T1
T1 = Z ∗ T1
T1 = Y2 ∗ T1
T1 = T1 − Y
T2 = T2 − X
if (T2 == 0)

if (T1 == 0) Q = P
Double (Q)
return Q

else{

Z = 0
return Q

}

if (P is not Affine and Z2 6= 1){

Z = Z ∗ Z2
}

Z = Z ∗ T2
T3 = T2

2
T2 = T2 ∗ T3
T3 = T3 ∗ X

X = T2
1

Y = T2 ∗ Y
T2 = X − T2
X = 2T3
X = T2 − X
T2 = T3 − X
T2 = T1 ∗ T2
Y = T2 − Y

if (P == φ) return Q
if Z == 0{

Q = P
return Q

}
if (P is not Affine and Z2 6= 1)

T1 = Z2
2

X = X ∗ T1
T1 = Z2 ∗ T1
Y = Y ∗ T1

T1 = Z2

T2 = X2 ∗ T1
T1 = Z ∗ T1
T1 = Y2 ∗ T1
Y = Y − T1
T1 = 2T1
T1 = Y + T1
X = X − T2
if (X == 0)

if (Y == 0) Q = P
Double (Q)
return Q

else{

Z = 0
return Q

}

T2 = 2T2
T2 = X + T2
if (P is not Affine and Z2 6= 1){

Z = Z ∗ Z2
}

Z = Z ∗ X
T1 = T1 ∗ X

X = X2

T2 = T2 ∗ X
T1 = T1 ∗ X

X = Y 2

X = X − T2
T2 = T2 − X
T2 = T2 − X
T2 = T2 ∗ Y
Y = T2 − T1
Y = Y/2

if (Z == 0) return Q

T1 = Z2

Z = Y ∗ Z
Z = 2Z
if (a == p − 3)

T2 = X − T1
T1 = X + T1
T2 = T1 ∗ T2
T1 = 2T2
T1 = T1 + T2

else

T1 = T2
1

T1 = a ∗ T1
T2 = X2

T1 = T2 + T1
T2 = 2T2
T1 = T2 + T1

Y = 2Y

Y = Y 2

T2 = Y 2

Y = Y ∗ X
T2 = T2/2

X = T2
1

X = X − Y
X = X − Y
Y = Y − X
Y = Y ∗ T1
Y = Y − T2

B Point addition and doubling algorithms C380

Table 7: Modified Jacobian and Variants Addition and Doubling
AJM, AJM-3, JJM, MMM, AJJ2,

AMM and AMM-3 Addition
MM, MJ and JJ2 − 3

Doubling
Qout = Qin + P , where

Qin = (X, Y, Z) or (X, Y, Z, aZ4)

P = (X2, Y2), (X2, Y2, Z2) or (X2, Y2, Z2, aZ4
2)

if AJJ2{
Qout = (X, Y, Z) and

aZ4 below is a temporary variable

}
else{

Qout = (X, Y, Z, aZ4)
}

Qout = Qin + Qin where

Qout = (X, Y, Z) or (X, Y, Z, aZ4)
if AJJ2
{Qin = (X, Y, Z)}
else{

Qin = (X, Y, Z, aZ4)
}

if (P == φ){
aZ4 = a ∗ Z4 if necessary
return Qout

}
if (Z == 0){

Qout = P
return Qout

}
if (P is not Affine and Z2 6= 1)

aZ4 = Z2
2

X = X ∗ aZ4

aZ4 = Z2 ∗ aZ4

Y = Y ∗ aZ4

aZ4 = Z2

T1 = X2 ∗ aZ4

T1 = T1 − X

aZ4 = Z ∗ aZ4

aZ4 = Y2 ∗ aZ4

aZ4 = aZ4 − Y
if (P is not Affine and Z2 6= 1){

Z = Z ∗ Z2
}

Z = Z ∗ T1
if (T1 == 0)

if (aZ4 == 0) Qout = P
Double (Qout)
return Qout

else

Z = 0

aZ4 = 0
return Qout

T2 = T2

1
T1 = T1 ∗ T2
Y = T1 ∗ Y
T2 = X ∗ T2

X =
(

aZ4
)2

X = X − T1
X = X − T2
X = X − T2
T2 = T2 − X

T2 = aZ4 ∗ T2
Y = T2 − Y
if not doing AJJ2

aZ4 = Z2

aZ4 =
(

aZ4
)2

if a == p − 3{
aZ4 = 0 − 3aZ4 }

else{
aZ4 = a ∗ aZ4

}

if (Z == 0) return Qout
if doing JJ2-3{

T2 = Z2
}

T1 = 2Y
Z = T1 ∗ Z

Y = Y 2

T1 = 2X
T1 = 2T1
T1 = T1 ∗ Y
if doing JJ2-3 T2 = (X − T2) ∗ (X + T2) #

X = 2T2
T2 = T2 + X

else

T2 = X2

X = 2T2
T2 = X + T2
T2 = T2 + aZ4

X = T2

2
X = X − T1
X = X − T1
T1 = T1 − X
T2 = T2 ∗ T1
Y = 2Y

Y = Y 2

Y = 2Y
if doing MM{

T1 = 2Y

aZ4 = T1 ∗ aZ4

}
Y = T2 − Y

This line may be calculated as:

T3 = X − T2
X = X + T2
T2 = X ∗ T3

In the smart card implementation, it was
possible to use a coprocessor register in place
of T3.
By using an extra addition, it is also possible
to compute T2 without using the additional
variable:

X = X − T2
T2 = T2 + T2
T2 = X + T2
T2 = T2 ∗ X

B Point addition and doubling algorithms C381

Table 8: Chudnovsky Jacobian Addition and Doubling
ACC and CCC Addition CC Doubling
Q = Q + P , where

Q = (X, Y, Z, Z2, Z3)

P = (X2, Y2) or (X2, Y2, Z2, Z2
2 , Z3

2)

Q = Q + Q, where

Q = (X, Y, Z, Z2, Z3)

if (P == φ){
return Q

}
if (Z == 0){

Q = P
return Q

}
if (P is not Affine and Z2 6= 1){

X = X ∗
(

Z2
2

) }
Z2 = X2 ∗

(
Z2

)
Z2 =

(
Z2

)
− X

T1 =
(

Z2
)2

if (P is not Affine and Z2 6= 1){
Z = Z ∗ Z2

}
Z =

(
Z2

)
∗ Z

Z2 =
(

Z2
)
∗ T1

T1 = X ∗ T1

if (P is not Affine and Z2 6= 1){
Y = Y ∗

(
Z3

2

) }
Z3 = Y2 ∗

(
Z3

)
Z3 =

(
Z3

)
− Y

if
((

Z2
)

== 0
)

if
((

Z3
)

== 0
) Q = P

Double (Q)
return Q

else

Z = 0

Z2 = 0

Z3 = 0
return Q

X =

(
Z3

)2

X = X −
(

Z2
)

X = X − T1

X = X − T1

T1 = T1 − X

Z3 =
(

Z3
)
∗ T1

Y = Y ∗
(

Z2
)

Y =
(

Z3
)
− Y

Z2 = (Z)2

Z3 = Z ∗
(

Z2
)

if (Z == 0) return Q
Z = Y ∗ Z

Z = 2Z

Y = Y 2

Z3 = X ∗ Y

Z3 = 2
(

Z3
)

Z3 = 2
(

Z3
)

X = X2

Z2 =
(

Z2
)2

Z2 = a ∗
(

Z2
)

Z2 =
(

Z2
)

+ X

Z2 =
(

Z2
)

+ X

Z2 =
(

Z2
)

+ X

X =
(

Z2
)2

X = X −
(

Z3
)

X = X −
(

Z3
)

Z3 =
(

Z3
)
− X

Z3 =
(

Z3
)
∗

(
Z2

)
Y = Y 2

Y = 2Y

Y = 2Y

Y = 2Y

Y =
(

Z3
)
− Y

Z2 = (Z)2

Z3 = Z ∗
(

Z2
)

	Introduction
	Field arithmetic
	Selection of the modular reduction algorithm
	Modular inversion

	Point coordinates
	Scalar multiplication
	Comparison of RSA with ECDSA
	Conclusion
	References
	ECDSA smart card simulation data
	Point addition and doubling algorithms

