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Approximately invariant subspaces
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Abstract

Invariant subspaces are well documented in the literature
and approximations for them exist. Approximately invariant
subspaces have properties that are highly desirable for iter-
ative solution strategies of large sparse matrix systems and
for approximating Ritz values and Ritz vectors of such ma-
trices. It is often a difficult task to identify an approximately
invariant subspace numerically. In this work a new definition
is proposed that assists with the task of identifying when a
subspace is approximately invariant by measuring the sine
of the angle between the image of any vector in the subspace
and its orthogonal projection onto the subspace. In partic-
ular the effect that different bases have on this measure is
analysed. Finally, the definition is used to provide theoreti-
cal error estimates when solving either systems of equations
or the eigenvalue problem.
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1 Introduction

The solution of a system of linear equations Ax = b , when the
n× n coefficient matrix A is large and sparse is of considerable in-
terest in a variety of applications in science and technology. The
most popular iterative techniques utilise Krylov methods to con-
struct a subspace on which the solution can be approximated. If
A is nonsingular, the system has a unique solution x ∈ Km (A,b) =
span {b,Ab,A2b, . . . ,Am−1b} , where m is the algebraic grade,
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namely the degree of the minimal polynomial of A. For matri-
ces that are diagonalisable, m is the number of distinct eigenvalues
and may range from 1 to n. If m is small, the Arnoldi decomposi-
tion, or Lanczos method for symmetric matrices, converges rapidly
as implemented in gmres(k) [1, 2] or minres [4]. The criterion
for terminating the sequence is to monitor the norm of the residual
rk = b−Axk .

There are, as with any iterative methods, some drawbacks in
implementing a Krylov method and these should be mentioned. If
A is singular, Krylov methods can fail, even if the system has a
solution [3]. If A is a Jordan Block of order n, then m = n , which
is not a practical option since the residual may not converge to zero
until n iterations [3]. Furthermore, as far as can be ascertained
from the literature for gmres-type algorithms, some value for k in
gmres(k) is arbitrarily chosen for restarting the process in order
to reduce computational difficulties that may arise when dealing
with large dimensional Krylov subspaces, including for example,
large memory requirements and potential loss of orthogonality in the
orthonormal basis. However, in many cases, after a certain number
of restarts, the small reductions encountered in the residual may
not justify the expanded work. From the experience of the authors,
there appears to be an optimal value, which here will be referred to
as the analytic grade ` that provides approximately the same result
as k � ` but is well short of m. This concept is introduced in terms
of approximately invariant subspaces and will be elaborated on in
future research.

In the next section of this paper (§2) a solution methodology is
analysed that enables the problem Ax = b in Rn to be reduced to
a more tractable problem Ây = z on a low dimensional subspace.
Then (§§3–4) the notion of approximately invariant subspaces as
required for this study is discussed. This concept is not new [5] but
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the approach proposed here is believed to be more direct because it
helps answer the question of how the choice of the basis affects the
error in solving the system of equations or the algebraic eigenvalue
problem. The following Section 5 examines theoretical error bounds
on these two standard numerical linear algebra problems and then
two case studies are provided (§6) that assess the proposed theory.
Finally (§7), the main conclusions of the work are summarised.

2 Solution methodology

Let A be a large sparse n× n matrix. Clearly in this case it is not
practical to solve the linear system Ax = b using classical direct
or indirect methods. A better strategy is to try to construct a low
dimensional subspace that captures b sufficiently well to yield an
approximate solution.

The best known techniques for achieving this objective are the
projection methods or Galerkin methods [2]. For easier exposition
we have exhibited these methods schematically in Figure 1. The
matrices Ā and Â are defined from the diagram, which we now
explain.

Given an m-dimensional subspace V ⊂ Rn and a k-dimensional
(k ≤ m) subspace W ⊂ Rn , let the n×m matrix V = [v1, . . . ,vm]
have the basis vectors for V as its columns and the n×k matrix W =
[w1, . . . ,wk] for W . It is useful to take V and W not necessarily ON
as is done with the Krylov basis in Section 6. Let VL and WL denote
the left inverses of V and W respectively. The transformation Ā :
V → W is defined from the diagram as ĀPV x = PWAx , for all
x ∈ Rn , so that ĀPV = PWA . From the figure see that v = PV x =
Vy . Both Āv = ĀVy = ĀPV Vy and w = PWb are contained
in W , which enables the solution to be found in Rk using the left
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Figure 1: Construction of a low dimensional subspace
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inverse of W:
WLĀPV Vy = z = WLPWb .

Again from the diagram ĀVy = WÂy , for all y ∈ Rm so that
ĀV = WÂ . Since v = PV v , the above system becomes

Ây = z , (1)

where Â = WLPWAV = WLAV and z = WLPWb = WLb as
explained below. If W = QR is the QR decomposition of W,
PW = QQT and WL = R−1QT is the left inverse of W. A key
observation is that WLPW = R−1QTQQT = R−1QT = WL ,
so that one can interpret the effect of WL as first a projection
onto W followed by inversion to Rk. Not surprisingly equation (1)
is the same as would result by using the Petrov-Galerkin projection
WL(b−AVy) = 0 .

The solution x = Vy , where y satisfies (1), or equivalently

QTAVy = QTb ,

is the least squares solution on V of Ax = b . If b ∈ W , the so-
lution is exact; otherwise, the relative error is ‖b− PW (b)‖/‖b‖ ,
where PW is the projection onto W . This relative error in effect
measures the relative residual of the least squares solution on V ,
if (1) can be solved exactly.

In constructing the subspaces V and W , one has the primary
aim in mind to capture b ∈ W , giving rise to:

Test 1 Is ‖b− PW (b)‖/‖b‖ < ε for a given ε ?

If V can be found of low dimensionality such that b satisfies Test 1,
it is easy to obtain the solution of the linear system.
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The eigenvalue problem Ax = λx can be treated in the same
way. From the diagram (take W = V ) ĀPV x = PV Ax = λPV x ,
that is, ĀVy = λVy , that is, Ây = λy , where Â = VLAV .
The solution of the eigenvalue problem Ây = θy approximates the
solution of Ax = λx , that is, θ approximates λ and x = Vy the
corresponding eigenvector. The pair (θ,x) is known as the Ritz pair
of A on V . Again this result is just the Ritz-Galerkin projection
method VL(AVy − λVy) = 0 .

2.1 Potential problems with this solution
methodology when using V = Km(b,A)

• If A is singular, Krylov methods can fail, even if the system
has a solution and m is the algebraic grade [3]. Although
W = A(V ) ⊂ V , b /∈ W .

• Even if A is nonsingular, Krylov methods may still fail to
satisfy Test 1 for sufficiently small ε if m is less than the
algebraic grade. Although V and W overlap it still may be
that W does not capture b.

• How does one decide on the size of m?

3 Invariant subspaces

If V is an invariant subspace of A, that is, Ax ∈ V for all x ∈ V
or W ⊆ V , and if A is nonsingular, then W = V . The methodology
presented above is simplified considerably and all that is required
to devise an efficient numerical strategy for solving a large sparse
matrix system is to capture b in V . However, ensuring that b is
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contained in an invariant subspace V is not straightforward and still
remains one of the grand challenges of current worldwide research
in such solution strategies. Equation (1) when V is an invariant
subspace becomes

VLAVy = VLb .

If b ∈ V , one easily finds an exact solution. If A is singular, then
even if b ∈ V , b may not be in W and there is no guarantee that
Ax = b will have a solution in V .

On the other hand if one is considering the algebraic eigenvalue
problem Ax = λx on an invariant subspace V one can always find
eigenpairs (λ,x = Vy) of A on V by solving

VLAVy = λy .

Note: If V is invariant, then AV = VÂ . Some examples of
invariant subspaces of A are:

1. {0} ;

2. Rn ;

3. nullspace N (A) ;

4. range R (A) ;

5. Krylov subspace Km (A,b) with m the algebraic grade;

6. eigenspace belonging to eigenvalue λ;

7. span of a subset of eigenvectors of A.
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4 Approximately invariant subspaces

In general it is hard to detect a fully invariant subspace and as a
consequence, an approximation is constructed. This approximation
is motivated by the idea that if b is close to subspace W then sin θ =
‖b− PW (b)‖/‖b‖ must be small, where θ is the angle between b
and its projection onto W .

This concept leads to the following definition, which tests all
vectors in the subspace to identify an approximately invariant sub-
space. Unless otherwise stated, ‖·‖ = ‖·‖2 .

Definition 2 Let A : V → W where V is a subspace of Rn and
W = A (V ) ⊂ Rn . If

max
x∈V
Ax6=0

‖Ax− PV (Ax)‖
‖Ax‖

< 10−t = ε , (2)

V is defined as an approximately invariant subspace of A of order t
(or ε).

This definition is equivalent to

max
w∈W
w 6=0

‖w − PV (w)‖
‖w‖

= sin θ < ε , (3)

where θ is the angle between w and its projection onto V . Clearly,
if V is an approximately invariant subspace, then every basis of V
satisfies (2). The converse, as seen in the following Lemma, is only
partially true.
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Lemma 3 If there exists a basis {ui}m
1 of V such that

‖Aui − PV (Aui)‖
‖Aui‖

< 10−t = δ , i = 1, . . . ,m ,

then V is an approximately invariant subspace of A of order ε =
‖A‖

√
mδ/µ0 , where µ0 is the smallest singular value of AU , U =

[û1, . . . , ûm] .

Proof: Without loss of generality, assume ui are normalised, that
is, ‖ui‖ = 1 . Any x ∈ V can be written as x =

∑m
i=1 ciui = Uc ,

Ax =
∑m

i=1 ciAui . Now (exclude Ax = 0),

‖Ax− PV (Ax)‖
‖Ax‖

=
‖
∑m

i=1 ci (Aui − PV (Aui))‖
‖Ax‖

≤
∑m

i=1 |ci| ‖Aui‖
‖Ax‖

δ

≤ ‖A‖ δ

∑m
i=1 |ci|
‖Ax‖

≤ ‖A‖ δ
√

m
‖c‖2

‖AUc‖2

where
∑m

i=1 |ci| = ‖c‖1 ≤
√

m ‖c‖2 . Hence,

max
x∈V,Ax6=0

‖Ax− PV (Ax)‖
‖Ax‖

≤ ‖A‖
√

m

µ0

δ ,

with µ0 the smallest singular value of AU. ♠
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Notes:

• The hypothesis of Lemma 3 can read: Let {ui}m
1 be a basis

of V . If there exists constants bij such that∥∥∥Aui −
∑m

j=1 bijuj

∥∥∥
‖Aui‖

< 10−t = ε , i = 1, . . . ,m ,

then V is an approximately invariant subspace of A of order
ε = ‖A‖

√
mδ/µ0 . The reason for this restatement is the well

known result

‖Aui − PV (Aui)‖ ≤

∥∥∥∥∥Aui −
m∑

j=1

bijuj

∥∥∥∥∥ for all bij .

• Changing the basis in Lemma 3 will result in a different δ.
Thus, using one basis may lead to a conclusion that the space
is approximately invariant that could not be detected using
another basis.

The discussion of inexact invariant subspaces given by [5] follows
from this Lemma 4.

Lemma 4 Let V = [v1, . . . ,vm] be an ON basis of an approxi-
mately invariant subspace V of A of order ε. Then there exists
matrices M and S such that

AV = VM + S

with the properties:

1. M = VTAV ;

2. VTS = 0 ; and

3. ‖S‖2 ≤ ‖A‖2 ε .
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Proof: By the orthogonal decomposition theorem

Avi = PV (Avi) + si ,

where si⊥V , that is, VT si = 0 . Now PV (Avi) = VVTAvi , so
that Avi = VVTAvi + si . In matrix form, AV = V

(
VTAV

)
+ S

which proves 1 and 2. For 3:

‖S‖2 = sup
y 6=0

‖Sy‖2

‖y‖2

= sup
y 6=0

∥∥AVy −VVTAVy
∥∥

2

‖y‖2

= sup
y 6=0

‖Av − PV (Av)‖2

‖Av‖2

‖AVy‖2

‖y‖2

≤ ε‖A‖2 , where v = Vy .

♠

5 Error bounds

In this section theoretical error bounds will be derived for the resid-
uals associated with the solution of large sparse, linear system and
the algebraic eigenvalue problem. In a perfect world these bounds
would be sufficient to complete the treatise of solving these two
problems on approximately invariant subspaces. Unfortunately, in
the computational world other sources of error manifest and this
section finishes with a brief discussion of potential inaccuracies that
can arise with the theoretical error bounds given below in Theo-
rems 5 and 6, including the impact of floating point arithmetic.

An estimate for the error in Test 1 is given by the following
theorem.
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Theorem 5 Let V be an approximately invariant subspace of a
nonsingular matrix A of order δ with ON basis {vi} and W = AV .
If b ∈ V and VTW is nonsingular, then Test 1 is satisfied with

ε =
√

m ‖A‖
∥∥∥(VTW

)−1
∥∥∥ δ .

Proof: Let wi = Avi . Given
∥∥∥wi −

∑m
j=1 〈wi,vj〉vj

∥∥∥ = ‖ηi‖ ≤
‖A‖ δ . Consider,

b−
m∑

i=1

βiwi = b−
m∑

i=1

βi

m∑
j=1

〈wi,vj〉vj −
m∑

i=1

βiηi

= b−
m∑

j=1

(
m∑

i=1

βi 〈wi,vj〉

)
vj −

m∑
i=1

βiηi

= −
m∑

i=1

βiηi ,

if we choose
∑m

j=1 βi 〈wi,vj〉 = 〈b,vj〉 . This requires the solution

of
(
VTW

)
β = VTb , which in turn, requires that VTW be non-

singular. Hence,

‖b− PW (b)‖
‖b‖

≤ ‖b−
∑m

i=1 βiwi‖
‖b‖

≤
∑m

i=1 |βi| ‖A‖ δ

‖b‖

=
‖β‖1 ‖A‖
‖b‖

δ

≤
√

m ‖β‖2 ‖A‖
‖b‖

δ

≤ ‖A‖
∥∥∥(VTW

)−1
∥∥∥√mδ ,

using β =
(
VTW

)−1
VTb and ‖V‖2 = 1 (VTV = I) . ♠
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Notes:

• To see that VTW is nonsingular in most cases that arise,
consider VTWc = 0 . Either Wc = 0 or w = Wc⊥V .
The former is impossible, since W has linearly independent
columns. For latter,

1 =
‖w − 0‖
‖w‖

=
‖w − PV (w)‖

‖w‖
< δ ,

which is not possible. A possible problem does arise, however,
if one of the vi is orthogonal to W .

• If A is symmetric, then

µ0 = min
y

yTVTAVy

yTy
≤ βTVTAVβ

βT β
=

βTVTb

‖β‖2

=
(Vβ)T b

‖β‖2 ≤ ‖Vβ‖ ‖b‖
‖β‖2 ≤ ‖b‖

‖β‖

and therefore, ‖β‖/‖b‖ ≤ 1/µ0 , that is

‖b− PW (b)‖
‖b‖

≤ ‖A‖
√

m

µ0

δ ,

where µ0 is the minimum Ritz value of A on V .

Theorem 6 If (θ,x) is a Ritz pair of A with ‖x‖ = 1 on an approx-
imately invariant subspace V of order ε, then ‖Ax− θx‖ ≤ ‖A‖ ε .

Proof: Since x = Vy , Ax = AVy = (VM + S)y = θVy + Sy ,
where VTS = 0 and My = θy (by Lemma 4). Thus,

‖Ax− θx‖ = ‖Sy‖ ≤ ‖S‖ ‖y‖ ≤ ε ‖A‖ , taking ‖x‖ = ‖y‖ = 1 .

♠
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5.1 Potential inaccuracies in the theoretical
bounds

Consider the solution of the problem Ax = b by the methodology
described in Section 2. The residual

‖b−Ax‖
= ‖b− PW (b) + PW (b)− PW (Ax) + PW (Ax)−Ax‖
≤ ‖b− PW (b)‖+ ‖PW (b)− PW (Ax)‖+ ‖PW (Ax)−Ax‖

consists of three terms. The first term expresses how well b is
captured in W . The second term gives the error in solving the
problem on the low dimensional subspace, that is, the exact reduced
problem which theoretically should be zero but depends on the errors
due to the method employed and inexact floating point arithmetic.
The third term expresses how well W captures the image of V . If
one chooses W such that b ∈ W then the first term is zero and the
error comes from the third term. To minimise the error W = A (V )
is chosen so that the last term is zero and then choose V to be
approximately invariant so that the first term will be reasonably
small. These issues will be addressed rigorously in future research
work to be undertaken by the authors.

6 Case studies

Much of the numerical analysis of large sparse matrices derives from
the study of Krylov subspaces. In this section we consider the pos-
sibility that such spaces are approximately invariant. To test this
proposition, two case studies are exhibited. The test matrices anal-
ysed were generated from the discretisation of three-dimensional
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partial differential equations

∇ · (K∇ϕ) = γ , K =

 a(x) 0 0
0 b(x) 0
0 0 c(x)

 . (4)

A cube shaped region was used for the computational domain
and the Dirichlet condition ϕ = 0 was adopted at the boundary.
Since only the discretisation matrix is of importance for the analysis
performed here, the right-hand side function γ was not considered.
Note that in the two cases discussed throughout this section, clas-
sical finite volume strategies were used to derive the discrete ana-
logues of (4) and all of the developed algorithms were implemented
in Matlab version 6 running under the Windows nt environment.
The right hand side vector b was taken as a random vector, with
entries chosen from a normal distribution with mean zero, variance
one and standard deviation one.

The following bases were examined for the detection of an ap-
proximately invariant subspace according to Lemma 3:

• Krylov Basis with Modified Gram-Schmidt Process used to
generate the standard ON basis for V = K` (b,A) :

U =
[
b,Ab, . . . ,A`−1b

]
≡ QR ,

which is unstable but convergent (in direction) sequence.

• Arnoldi Method used to Generate ON basis for V = K` (b,A) :

AQ`=Q`+1H̄` ,

which is stable but does not produce a convergent sequence,
where H̄` is an upper Hessenberg matrix with its elements
defined by the Arnoldi algorithm.
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If the Krylov subspace is going to be approximately invariant
then any basis for it must satisfy the condition of Lemma 3 with
sufficiently small δ.

6.1 Isotropic model

In this case study the parameters in (4) were set to a (x, y, z) =
b (x, y, z) = c (x, y, z) = 1 . The dimensions of the system were
nx = ny = nz = 8 which generated a total of 512 unknowns.

The initial approximation x0 = (0, 0, . . . , 0)T was used in gm-
res. The norms of the system were ‖A‖1 = 12 , ‖A‖∞ = 12 ,
‖A‖2 = 11.6382 and ‖b‖2 = 13.1135 , the condition number of the
coefficient matrix was k2 (A) = 32.1634 . The spectrum of eigen-
values ranged between λmin = −11.6382 and λmax = −0.36184 .
The parameter δ = 1× 10−25 in Lemma 3 enabled the approxi-
mately invariant subspace to be detected with dimension ` = 40
and the norm of the solution residual computed from gmres was
‖r‖2 = 1.16862× 10−10 .

Figure 2(a) shows the reduction in the solution residual with
increasing subspace dimension `, while Figure 2(b) depicts the vari-
ation in sin θ` versus `, where sin θ` refers to the test in Lemma 3
using the last basis vector in the approximate invariant subspace
since the other basis vectors in the subspace theoretically already
satisfy the condition. Observe from Figure 2(b) that the Arnoldi
basis produces a pronounced oscillatory behaviour in sin θ` . This
behaviour indicates that it is unlikely the Krylov subspace is approx-
imately invariant. However, the monotonically decreasing behaviour
of the graph for the Krylov basis leads us to believe that the Krylov
subspace could be in fact an approximately invariant subspace.

The order of the approximately invariant subspace was ε =
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Figure 2: Results for the isotropic case study: (a) Reduction in the
residual for gmres; (b) The performance of Lemma 3 on detecting
the approximately invariant subspace
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‖A‖δ/µ0 = 7.12642 × 10−10 , with µ0 = 1.6331 × 10−15 . The er-
ror bound in this case was satisfied successfully as

‖b− PW (b)‖
‖b‖

≡ 8.9×10−12 ≤ ‖A‖
∥∥∥(VTW

)−1
∥∥∥√` ε ≡ 1.4×10−7 ;

however, the bound in Lemma 4 could not be satisfied:

‖AV −VB‖2 = 2.3 6≤ ‖A‖2 ε = 8.3× 10−9 .

6.2 Anisotropic model

The situation was almost exactly the same as stated above for the
isotropic model. However, the functions a (x, y, z) = 1 , b (x, y, z) =
10 , c (x, y, z) = 1000 were used. The norms of the system in this
case were computed as ‖A‖1 = 4044 , ‖A‖∞ = 4044 , ‖A‖2 = 3922.1
and ‖b‖2 = 13.1135 and the condition number k2 (A) = 32.1634 .
The spectrum of eigenvalues ranged between λmin = −3922.1 and
λmax = −121.94 .

The statistics of the test are exhibited in Figure 3(a) for the
reduction in the solution residual and Figure 3(b) for the variation
in sin θ` with increasing subspace dimension `. The oscillatory be-
haviour in sin θ` is again evident in Figure 3(b) for the Arnoldi basis,
and again the monotonically decreasing behaviour of the graph for
the Krylov basis leads us to believe that the Krylov subspace could
be in fact an approximately invariant subspace.

In this case the parameter δ = 1× 10−25 in Lemma 3 enabled
the approximately invariant subspace to be detected with dimen-
sion ` = 37 and the norm of the solution residual computed from
gmres was ‖r‖2 = 1.1587× 10−7 . The order of the approximately



6 Case studies C397

(a)
0 5 10 15 20 25 30 35 40

−7

−6

−5

−4

−3

−2

−1

0

1

2

lo
g 10

 ||
 r

it ||
2

Matrix vector multiplies

GMRES with Krylov dimension=100, residual tolerance 1e−025 
23− 7−2002, 17:58: 1

Gmres

(b)
0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

si
n(

θ)

Matrix vector multiplies

AIS error in GMRES with Krylov dimension=100, residual tolerance 1e−025 
23− 7−2002, 17:58: 2

Krylov Basis
Arnoldi Basis

Figure 3: Results for the Anisotropic Case Study: (a) Reduction
in the residual for gmres; (b) The performance of Lemma 3 on
detecting the approximately invariant subspace
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invariant subspace was ε = ‖A‖δ/µ0 = 7.69094 × 10−10 , with
µ0 = 5.09958 × 10−13 . The error bound in this case was satisfied
successfully as

‖b− PW (b)‖
‖b‖

≡ 8.8× 10−9 ≤ ‖A‖
∥∥∥(VTW

)−1
∥∥∥√` ε ≡ 1.5× 10−7 .

Again the bound in Lemma 4 could not be satisfied:

‖AV −VB‖2 = 1317 6≤ ‖A‖2 ε = 3.0× 10−6 .

The results presented above for both case studies definitely war-
rant further investigations. If there are problems in our results it
is suspected that the source of the error seems to arise from the
magnitude of µ0 which appears to be of the same order as δ. Fur-
thermore, the algorithm used for computing µ0 in Matlab may not
provide sufficient accuracy for the computations.

7 Conclusions

In this paper a new definition of an approximately invariant sub-
space was introduced that could be useful for solving large-scale
linear systems or the algebraic eigenvalue problem. The sensitivity
of the basis used for detecting when a subspace is approximately
invariant was elucidated and, using the definition, theoretical error
bounds were placed on the two standard numerical linear algebra
problems, which will be the subject of further investigations. Fu-
ture work also must consider how these theoretical results transfer
to floating point computations. The primary objective of this work
was to lay solid theoretical foundations that could pave the way for
developing a new solution strategy to overcome the problems asso-
ciated with Krylov methods discussed in the introduction. Krylov
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subspace methods seek to construct an approximately invariant sub-
space of low dimension that contains b and hopefully the solution x
of Ax = b . A more direct approach might be to construct an in-
variant subspace of low dimension that contains the solution x. The
theory proposed here can enable this possibility to be examined rig-
orously in future research.
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