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A time-stepping dynamically-consistent
spherical-shell dynamo code

D. J. Ivers∗

(Received 10 July 2001)

Abstract

A pseudo-spectral dynamo code, developed as a compu-
tational laboratory, is described. The magnetic, heat and
Boussinesq Navier-Stokes equations, with inertia, non-linear
advection, buoyancy with asymmetric gravity, Coriolis, vis-
cous and Lorentz forces, are solved numerically in a rotating
conducting fluid shell. The convection is thermally driven
by prescribed boundary temperatures. The equations are
discretised using toroidal-poloidal fields, Chebychev colloca-
tion in radius and spherical harmonic expansion in angles.
Derivatives are performed spectrally. Products are evalu-
ated in physical space for efficiency. Fields are transformed
between physical and spectral spaces by fast Fourier and
Gauss-Legendre methods. Linear terms are time-stepped
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implicitly and product terms explicitly using an Adams pre-
dictor/corrector. Results are presented for two benchmark
models.

Contents

1 Introduction C401

2 Numerical methods C405
2.1 Spectral equations . . . . . . . . . . . . . . . . . C406
2.2 Discrete symmetries . . . . . . . . . . . . . . . . . C411
2.3 Spatial discretisation . . . . . . . . . . . . . . . . C412

2.3.1 Angular discretisation . . . . . . . . . . . C412
2.3.2 Radial discretisation . . . . . . . . . . . . C415

2.4 Time-stepping . . . . . . . . . . . . . . . . . . . . C415
2.5 Solution of the linear systems . . . . . . . . . . . C417

3 Benchmark models C418
3.1 Model 0: no-slip rotating thermal convection . . . C419
3.2 Model 1: dynamo with insulating inner-core . . . C420

4 Concluding remarks C421

References C421

1 Introduction

The main magnetic fields of the larger planets — Uranus, Neptune,
Saturn, Jupiter, the Earth, possibly Mercury and the Sun are gen-
erated by motion in the electrically-conducting fluid cores or shells.
Motions which are sufficiently vigorous and asymmetric can act as
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self-exciting dynamos. Attempts are also underway by several re-
search groups to develop laboratory rotating fluid dynamos liquid
sodium and gallium; see [1] for recent articles. A pseudo-spectral dy-
namo code, which has been developed as a computational laboratory
primarily to study planetary dynamos and the different parameter
regimes of dynamical dynamos generally, is described herein. The
ultimate aim is to develop realistic dynamical models of planetary
main magnetic fields.

The Earth is composed of an electrically-conducting core, con-
sisting of a solid inner core and a liquid outer core, surrounded
by a solid poorly conducting mantle. This motivates the proto-
type model underlying the code, which consists of an electrically-
conducting rotating fluid spherical shell, V : ri < r < ro , enclosing
a rigid inner core and surrounded by an electrically-insulating rigid
mantle with an insulating exterior. Core and mantle are uniformly
and rapidly co-rotating. The Boussinesq approximation is made, in
which density variations are retained only in the buoyancy force.
The convection is thermally driven by prescribed temperatures at
the inner and outer core boundaries. The gravitational field may be
asymmetric. The dynamo action of the flow in the liquid outer core
is self-exciting, since the magnetic field vanishes at infinity.

The magnetic field B, velocity v and temperature Θ in the liq-
uid spherical shell are governed by the magnetic induction equation,
the Boussinesq Navier-Stokes momentum equation in a reference
frame uniformly rotating at rate Ω, with inertia, non-linear advec-
tion, Coriolis, buoyancy, viscous and magnetic Lorentz forces and
the heat equation with advection and thermal diffusion. The mag-
netic field and the velocity are solenoidal. The magnetic, viscous
and thermal diffusivities, η, ν and κ, respectively, are constant.
The spherical radius, co-latitude and east-longitude are denoted r,
θ and φ, with the z axis (θ = 0) orientated along the rotation
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axis. Physical quantities are non-dimensionalised using the length
scale L = ro − ri , viscous diffusion time scale L2/ν , viscous veloc-
ity scale ν/L , magnetic induction scale

√
ρΩµ0η and temperature

scale Θ0
o −Θ0

i , where Θ0
o and Θ0

i are typical temperatures on inner
and outer shell boundaries. The dimensionless equations are thus

∂B

∂t
− Pm−1∇2B = ∇× (v ×B) , (1)

E

(
∂v

∂t
+ ω× v −∇2v

)
+ 1z × v

= −∇P − RaΘg + (2Pm)−1J×B , (2)

∂Θ

∂t
− Pr−1∇2Θ = −v · ∇Θ + Q , (3)

∇ · v = 0 , ∇ ·B = 0 , (4)

where the vorticity ω = ∇×v , P = p+ 1
2
v2 is the modified pressure,

g is the gravitational acceleration, Ra is the modified Rayleigh num-
ber, J = ∇×B , E = ν/2ΩL2 is the Ekman number, Pr = ν/κ is the
Prandtl number and Pm = ν/η is the magnetic Prandtl number.

The shell differential equations are complemented by boundary
and matching conditions. The mantle and inner-core are rigid and
stationary in the uniformly rotating reference frame, and the veloc-
ity is continuous across the inner and outer shell boundaries. Thus

v = 0 , at r = ri , ro . (5)

Thermal convection is driven by prescribed temperatures at the in-
ner and outer shell boundaries,

Θ = Θo , at r = ro ; Θ = Θi , at r = ri . (6)

The inner-core Vi, the mantle and the exterior V̂ are electrically-
insulating, and the magnetic field is solenoidal,

∇×B = 0 , ∇ ·B = 0 , in Vi , V̂ , (7)
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the magnetic field is continuous across the inner and outer shell
boundaries,

[B] = 0 , at r = ri , ro (8)

and there are no sources of magnetic field at infinity,

B = O(r−3) , as r →∞ . (9)

Dynamo codes using a variety of methods have been developed [3,
5, 4, 6]. The numerical solution of the full dynamical dynamo prob-
lem is extremely difficult and the codes are complicated, so a variety
of codes implementing the same and different numerical methods is
absolutely essential to provide quantitative checks. The code de-
scribed herein solves the equations using a pseudo-spectral method,
which is Galerkin in the angles and Chebychev collocation in the
radius. The code differs from previous work either in the use of the
poloidal momentum equation rather than the radial and horizontal
divergence momentum equations [3], the use of radial Chebychev
collocation rather than Chebychev tau [6] or finite-differences [5],
the implicit time-stepping of the Coriolis terms rather than explicit
time-stepping [4], or the exploitation of problem symmetries. It
should be noted that descriptions of these large codes is often in-
complete or unclear in the literature.

In §2 the numerical methods, which are used in the code, are de-
scribed. In §3 results are presented for two benchmark models [2]:
a non-magnetic thermal convection model and a convective dynamo
model, both with mantle and inner-core uniformly co-rotating. Con-
cluding remarks are made in §4.
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2 Numerical methods

There are several substantial difficulties in the numerical solution
of the equations (1)–(9). The system has widely differing time- and
length-scales; stiffness; geometrical complications due to the spheri-
cal boundaries and the non-local magnetic matching condition with
an insulating exterior, but the preferred axis of (rapid) rotation; and
the non-linearity of the advection terms in the momentum and heat
equations, the Lorentz force and the Faraday induction term of the
magnetic induction equation. The axisymmetric, toroidal flow and
planar flow antidynamo theorems imply that the solution must be
essentially three-dimensional, both in the number of independent
variables and vector field directions.

The potentials of the poloidal-toroidal representations of the
magnetic field and the velocity, together with the temperature, are
expanded in spherical harmonics in θ and φ, and Chebychev poly-
nomials in r. There are five scalar fields: the temperature, and
the toroidal and poloidal potentials of the magnetic field and the
velocity. The associated angular spectral forms of the linear terms
in the governing equations, isolated on the left sides of (1)–(3), are
also given. The discrete symmetries of the problem exploited in the
code to reduce the problem size are outlined. The spectral equa-
tions are truncated and evaluated at the interior collocation points.
Differentiations are performed spectrally. For efficiency the vector
fields are calculated on an (r, θ, φ)-grid and the product terms on
the right sides of (1)–(3), are evaluated. The results are transformed
back to angular-spectral/radial space using fast Fourier and Gauss-
Legendre methods. The time-stepping method uses the implicit
two-step Adams-Moulton method for the linear diffusion terms and
the Coriolis force, and an Adams three-step predictor/two-step cor-
rector method for the product and non-linear terms. The solution
of the linear algebraic systems uses banded Gaussian elimination.
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2.1 Spectral equations

A vector field F has the scaloidal-poloidal-toroidal representation,

F = R{R}+ S{S}+ T{T} , R{R} = ∇R ,

S{S} = ∇×T{S} , T{T} = ∇× Tr ,

in a spherical shell concentric with the origin. If F is solenoidal,
then the scaloidal field R{R} can be omitted. In component form

Fr = ∂rR− L2S

r
,

Fθ =
∂θR

r
+

∂θ∂r(rS)

r
+

∂φT

sin θ
,

Fφ =
∂φR

r sin θ
+

∂φ∂r(rS)

r sin θ
− ∂θT .

Thus the velocity and magnetic field, which are solenoidal by (4),
and the temperature gradient have the representations,

v = S{s}+ T{t} , in V ;

B = S{S}+ T{T} , in E3 ;

∇Θ = R{Θ} , in V .

The poloidal and toroidal potentials, s, t, S and T , of the
velocity and the magnetic field are expanded in terms of mean-
normalised (surface) spherical harmonics of degree n ∈ N and or-
der m = −n, . . . , n defined by

Y m
n (θ, φ) = Pm

n (cos θ)eimφ , m ≥ 0 ;

Y m
n = (−)m(Y −m

n )∗ , m < 0 ; (10)
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where the asterisk denotes the complex conjugate and the associated
Legendre functions are defined by

Pm
n (z) = (−)n+m(1− z2)m/2

√
2n + 1

2nn!

√
(n−m)!

(n + m)!

dn+m(1− z2)n

dzn+m
.

(11)
These spherical harmonics are orthonormal with respect to the inner-
product,

(f, g) :=
1

4π

∮
fg∗ dΩ . (12)

It is useful to define the spherical harmonic transform of a scalar
function f by Ym

n {f} := (f, Y m
n ) . Y m

n is symmetric (antisymmetric)
about the equator if n−m is even (odd),

Y m
n (π − θ, φ) = (−)n−mY m

n (θ, φ) . (13)

The expansions of the poloidal and toroidal potentials in spherical
harmonics in V or E3 are thus given by

f =
∞∑

n=1

n∑
m=−n

fm
n Y m

n , f = s, t, S, T , (14)

where the coefficients sm
n , tmn , Sm

n , Tm
n are functions of r and the

time t. The n-sum has the lower limit n = 1 , since poloidal and
toroidal vector fields are invariant under addition of an arbitrary
function of r to the potential. The temperature has the expansion,

Θ =
∞∑

n=0

n∑
m=−n

Θm
n Y m

n . (15)

The inverse scaloidal-poloidal-toroidal transform from the spher-
ical harmonic (spectral) coefficients of the scaloidal, poloidal and
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toroidal potentials to the physical vector fields is required to con-
struct B, v and ∇Θ from Sm

n , Tm
n , sm

n , tmn and Θm
n :

R =
∞∑

n=0

n∑
m=−n

Rm
n Y m

n ,

S =
∞∑

n=1

n∑
m=−n

Sm
n Y m

n ,

T =
∞∑

n=1

n∑
m=−n

Tm
n Y m

n ,

F = F 0
0 1r +

∞∑
n=1

n∑
m=−n

{Fm
rn1r + Fm

θn1θ + Fm
φn1φ} ,

where F 0
0 = ∂rR

0
0 and

Fm
rn =

{
∂rR

m
n

n(n + 1)
+

Sm
n

r

}
n(n + 1)Y m

n

Fm
θn =

{
Rm

n

r
+

∂r(rS
m
n )

r

}
∂θY

m
n + Tm

n

∂φY
m
n

sin θ

Fm
φn =

{
Rm

n

r
+

∂r(rS
m
n )

r

}
∂φY

m
n

sin θ
− Tm

n ∂θY
m
n .

The poloidal-toroidal transform from a physical solenoidal field F
to the spectral coefficients of its poloidal and toroidal potentials is
defined by

T m
n {F} :=

1

4πn(n + 1)

∮
Y m∗

n r · ∇× F dΩ (16)

DSm
n {F} := − 1

4πn(n + 1)

∮
Y m∗

n r · ∇×∇× F dΩ . (17)

In particular, applying (16) and (17) to F = T{T} + S{S} gives
T m

n {F} = Tm
n and DSm

n {F} = Sm
n , where r2Dn := r2∂rr + 2r∂r −
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n(n+1) . The transform is used to extract the spectral poloidal and
toroidal momentum and magnetic induction equations.

The spectral toroidal and poloidal momentum equations are
given by the poloidal-toroidal transform of the momentum equa-
tion,

E(∂t −Dn)tmn − cm
n

n− 1

n
d1−ns

m
n−1 − cm

n+1

n + 2

n + 1
dn+2s

m
n+1

− imtmn
n(n + 1)

= T m
n {F} (18)

E(∂t −Dn)Dns
m
n + cm

n

n− 1

n
d1−nt

m
n−1 + cm

n+1

n + 2

n + 1
dn+2t

m
n+1

− imDns
m
n

n(n + 1)
= DSm

n {F} , (19)

where

F = −Eω× v + (2Pm)−1J×B− RaΘg ,

cm
n =

√
(n2 −m2)/(4n2 − 1) ,

dn = ∂r + n/r .

Equations (18) and (19) are equivalent to the spherical harmonic
transform of the radial components of the vorticity equation and
its curl. The pressure is eliminated reducing the number of depen-
dent fields from six to five, at the expense of increasing the order
of the differential system. The poloidal and toroidal coefficients
are coupled on the left sides of the equations (18) and (19) by the
Coriolis force.

The spectral magnetic induction equations are obtained by ap-
plying the poloidal-toroidal transform to the magnetic vector po-
tential equation,

∂A

∂t
− Pm−1∇2A = v ×B−∇Φ ,
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where A is the vector potential, B = ∇×A , and Φ is the electro-
static potential. Thus

(∂t − Pm−1Dn)Sm
n = T m

n {v ×B} ,

(∂t − Pm−1Dn)Tm
n = −Sm

n {v ×B} . (20)

Note the toroidal transform produces the poloidal induction equa-
tion (20) and conversely. The poloidal and toroidal coefficients are
decoupled on the left sides of the equations.

The spectral heat equation is the spherical harmonic transform
of the heat equation (3):

(∂t − Pr−1Dn)Θm
n = −Ym

n {v · ∇Θ} . (21)

At the inner and outer shell boundaries the spectral coefficients
of the velocity satisfy the no-slip conditions by (5):

sm
n = 0 , ∂rs

m
n = 0 , tmn = 0 , at r = ri , ro . (22)

The magnetic induction matches continuously to a potential field in
the insulating inner core, mantle and exterior by (7), (8) and (9):

d−nS
m
n = 0 , at r = ri ;

dn+1S
m
n = 0 , at r = ro ; (23)

Tm
n = 0 , at r = ri , ro ;

and the temperature is fixed by (6):

Θm
n = Θm

in , at r = ri ; Θm
n = Θm

on , at r = ro . (24)

In the models considered in §3 the temperature is constant at the
inner and outer boundaries, Θ0

i0 = 1 , Θm
in = 0 for n > 0 and Θm

on = 0
for n ≥ 0 .
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2.2 Discrete symmetries

There are two symmetries of the problem, which are exploited to
reduce its size. Whether such symmetries are stable under small
perturbations must be investigated on a case by case basis.

The first is symmetry under reflection in the equatorial plane or
parity, giving odd/even scalar fields and dipole/quadrupole vector
fields.

• A scalar field f is odd if f(r, θ, φ) = −f(r, π− θ, φ) ; and even
if f(r, θ, φ) = −f(r, π − θ, φ) .

• A vector field F is dipole if Fr(r, θ, φ) = −Fr(r, π − θ, φ) ,
Fθ(r, θ, φ) = Fθ(r, π− θ, φ) and Fφ(r, θ, φ) = −Fφ(r, π− θ, φ) .

• A vector field F is quadrupole if Fr(r, θ, φ) = Fr(r, π − θ, φ) ,
Fθ(r, θ, φ) = −Fθ(r, π− θ, φ) and Fφ(r, θ, φ) = Fφ(r, π− θ, φ) .

Let o, e, d and q denote odd, even, dipole and quadrupole, respec-
tively. If initially, the velocity is quadrupole, vd = 0 , the magnetic
field is purely dipolar or quadrupolar, Bq = 0 or Bd = 0 , the
pressure is even, Po = 0 , gravity is quadrupole, gd = 0 , the tem-
perature is even, Θo = 0 , and the heat source is even, Qo = 0 , then
the fields and equations split into two sets which evolve indepen-
dently: the dipole set (vq, ωd,Bd,Jq, Pe, Θe) and the quadrupole set
(vq, ωd,Bq,Jd, Pe, Θe) . Using the parity property (13) of spherical
harmonics, a scalar field f is odd/even, if its coefficients fm

n van-
ish, when n −m is even/odd. A vector field is dipole/quadrupole,
if its toroidal potential is even/odd, and its poloidal and scaloidal
potentials are odd/even.

The second symmetry is rotational symmetry about the z-axis.
If the highest common factor of the orders m, which occur in the
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initial conditions, is mhcf , then the only spherical harmonic coeffi-
cients, which are generated subsequently are multiples of mhcf .

The code exploits both symmetries, since they can reduce the
problem size by factors 2 and mhcf , respectively.

2.3 Spatial discretisation

The spectral equations (18)–(21) are discretised in angle by truncat-
ing and in radius by collocating. As described below, product terms
are evaluated on an (r, θ, φ)-grid and then transformed to angular-
spectral/radial space using a discrete form of the poloidal-toroidal
transform.

2.3.1 Angular discretisation

Triangular truncation of the spherical harmonic expansions is used.
Thus the degree- or n-sums in the expansions (14)–(15) of the
velocity and magnetic potentials, and the temperature, are trun-
cated at n = Nn . The maximum order is also Nn, that is, m =
−Nn, . . . , Nn . Other truncations are possible, but this particular
truncation is used, since there is no orientation-preferred length
scale and Y m

n is mapped to a linear combination of {Y −n
n , . . . , Y n

n }
under any rotation of the coordinate system.

Angular discretisation is performed on a finite grid,

{(θk, φ`) | k = 1, . . . , Nθ , ` = 0, . . . , Nφ} (25)

where {µk := cos θk | k = 1, . . . , Nθ} are the nodes of the Nθ-
point Gauss-Legendre quadrature rule with weights wk and {φ` =
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2π`/Nφ | ` = 0, . . . , Nφ} are the nodes for the Nφ-panel trapezoidal
rule.

For a real function f the discrete spherical harmonic transform
(dsht) is

Ỹm
n {f} =

Nθ∑
k=1

fm(θk)P
m
n (θk)

wk

2
,

fm(θk) =
1

Nφ

Nφ−1∑
`=0

f(θk, φ`)e
−imφ` . (26)

The `-summation, which is the discrete Fourier transform (dft)
in φ, can be performed using a fast Fourier transform (fft). If
the k-summation is done first an fft cannot be used, since Pm

n

depends on m. If the sh expansion of f is finite and the summations
in (14) and (15) truncate at n = Nn and |m| = Nn , then the
dsht (26) gives the exact coefficients fm

n , if 2Nn ≤ 2Nθ − 1 and
2Nn+1 ≤ Nφ, since the dft is then m-orthogonal with no aliassing,
Nθ-point Gaussian quadrature is exact for polynomials of degree
2Nθ − 1 and fPm

n is a polynomial in µ of degree ≤ 2Nn . [Note
Pm

n1
Pm

n is a polynomial in µ of degree n1 + n .] The dsht also
preserves parity about the equator µ = 0 .

If f is a product f = gh , where g and h have finite sh-expansions
truncated at n = Nn and |m| = Nn , then fPm

n is polynomial of
degree ≤ 3Nn in µ, since it is a linear combination of polynomials
Pm1

n1
Pm2

n2
Pm

n of degree n1 + n2 + n in µ, noting m = m1 + m2 since
the dft is m-orthogonal with no aliassing. In this case the dsht
is exact if 3Nn ≤ 2Nθ − 1 and 4Nn + 1 ≤ Nφ . This result is true
with some further justification in the application of the dsht to the
term v · ∇Θ in the heat equation.

The inverse discrete scaloidal-poloidal-toroidal transform is re-
quired to construct B, J, v, ω and ∇Θ on the grid (25) for the
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product terms. It is

Fξ(θk, φ`) =
Nn∑

m=−Nn

Fm
ξ (θk)e

imφ` , ξ = r, θ, φ ,

where

Fm
r (θk) =

Nθ∑
n=m

{
∂rR

m
n

n(n + 1)
+

Sm
n

r

}
n(n + 1)Pm

n (θk)

Fm
θ (θk) =

Nθ∑
n=m

{[
Rm

n

r
+

∂r(rS
m
n )

r

]
∂θP

m
n (θk) + Tm

n

imPm
n (θk)

sin θk

}

Fm
φ (θk) =

Nθ∑
n=m

{[
Rm

n

r
+

∂r(rS
m
n )

r

]
imPm

n (θk)

sin θk

− Tm
n ∂θP

m
n (θk)

}
.

The φ-dft’s are evaluated using real fft’s.

The discrete poloidal-toroidal transform is

T̃ m
n {F} = −

Nθ∑
k=1

{
Fm

θ (θk)
imPm

n (θk)

n(n + 1) sin θk

+ Fm
φ (θk)

∂θP
m
n (θk)

n(n + 1)

}
wk

2

(27)

DS̃m
n {F} =

Nθ∑
k=1

{
−Fm

r (θk)

r
Pm

n (θk) +
∂r[rF

m
θ (θk)]

r

∂θP
m
n (θk)

n(n + 1)

−
∂r[rF

m
φ (θk)]

r

imPm
n (θk)

n(n + 1) sin θk

}
wk

2
. (28)

The five combinations of the associated Legendre function and its
derivatives, which occur, are precomputed and stored.
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2.3.2 Radial discretisation

The radial discretisation is performed by expanding the spherical
harmonic coefficients of the temperature and the poloidal-toroidal
potentials of the velocity and the magnetic field in NT Chebychev
polynomials of the first kind, Tj(x) := cos(j cos−1 x) , −1 ≤ x ≤ 1 ,
j = 0, . . . , NT − 1 , where r = (ri + ro)/2− x(ro − ri)/2 . Thus

fm
n (r, t) =

NT−1∑′′

j=0

fm
n,jTj(x) , f = Θ, s, t, S, T ,

where the primes denote 1
2

factors in the j = 0 and j = NT − 1
terms. The Chebychev collocation points, xj = cos[jπ/(NT − 1)] ,
j = 0, . . . , NT − 1 are used. This permits the use of the fast co-
sine transform. The differential equations (18)–(21) are satisfied at
the interior points, xj, j = 1, . . . , NT − 2 , and the boundary condi-
tions (22)(c)–(24) are satisfied at the endpoints, xj, j = 0, NT − 1 .
The poloidal momentum equation (28) is satisfied at the interior
points, xj, j = 2, . . . , NT−3 , and the boundary conditions (28)(a,b)
are satisfied at the points, xj, j = 0, 1, NT − 2, NT − 1 .

2.4 Time-stepping

The spatially discretised momentum, magnetic and heat equations
and boundary conditions are of the form

A
dx

dt
= Lx + N(t,x) . (29)

where x = (xB,xv,xΘ)T , in which the column vectors xB, xv and xΘ

represent the spatially discretised fields S, T , s, t and Θ. The
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matrices A, L and the vector-valued non-linear function N have
the structure,

A =

AB 0 0
0 Av 0
0 0 AΘ

 , L =

LB 0 0
0 Lv 0
0 0 LΘ

 ,

N =

 NB(B, v)
Nv(B, v, Θ)
NΘ(v, Θ)

 .

The matrices A and L are independent of t. Equation (29) is re-
placed by the system,

Ax = y + z ,
dy

dt
= Lx ,

dz

dt
= N(t,x) , (30)

to split off the non-linear terms, and the ordinary differential sys-
tems (30)(b,c) are time-stepped using the one-step Adams-Moulton
method and a two-step Adams-Bashforth /one-step Adams-Moulton
predictor/corrector (pc) method, respectively. The time-stepping
equations are thus the predictor schemes with step-size h:

M0
BBP

n+1 = M1
BBn + 1

2
h{3NB(Bn, vn)−NB(Bn−1, vn−1)} , (31)

M0
vv

P
n+1 = M1

vvn + 1
2
h{3Nv(Bn, vn, Θn)−Nv(Bn−1, vn−1, Θn−1)} ,

(32)

M0
ΘΘP

n+1 = M1
ΘΘn + 1

2
h{3NΘ(vn, Θn)−NΘ(vn−1, Θn−1)} , (33)

and the single-iteration corrector schemes:

M0
BBn+1 = M1

BBn + 1
2
hNB(BP

n+1, v
P
n+1) + 1

2
hNB(Bn, vn) , (34)

M0
vvn+1 = M1

vvn + 1
2
hNv(B

P
n+1, v

P
n+1, Θ

P
n+1) + 1

2
hNv(Bn, vn, Θn) ,

(35)

M0
ΘΘn+1 = M1

ΘΘn + 1
2
hNΘ(vP

n+1, Θ
P
n+1) + 1

2
hNΘ(vn, Θn) , (36)
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where

M0
B = AB − 1

2
hLB , M0

v = Av − 1
2
hLv , M0

Θ = AΘ − 1
2
hLΘ ,

(37)

M1
B = AB + 1

2
hLB , M1

v = Av + 1
2
hLv , M1

Θ = AΘ + 1
2
hLΘ .

(38)

2.5 Solution of the linear systems

Only three different matrices, M0
B, M0

v and M0
Θ, must be inverted to

solve the six linear systems (31)–(36). Once model parameters are
fixed, these matrices depend only on the time-step h, so the linear
systems (31)–(36) are solved by using the LU -decomposition of M0

B,
M0

v and M0
Θ, which is computed prior to time-stepping. Time-step

change, which is not implemented, would require recomputation of
the LU -decompositions at each step change. The equations and
fields for m < 0 are omitted since the physical fields are real.

The largest and most difficult linear systems to solve are the
velocity systems (32) and (35). By exploiting the dipole-quadrupole
parity M0

v and the axisymmetry of the coefficients on the left side
of the momentum equation (2), and the real nature of the velocity,
the matrix M0

v can be split into 2(Nn + 1) irreducible matrices,
one dipole and one quadrupole matrix for each m = 0, . . . , Nn .
Moreover, these matrices are block tridiagonal, if the different radial
(row) and Chebychev (column) entries for given m and n are blocked
together. The two matrices for m = 0 are real and NnNr ×NnNT ;
for m > 0 the matrices are complex and (Nn−m+1)Nr×(Nn−m+
1)NT . The velocity is stored in two real and two complex arrays,
which have the structure,

v0
q = (t01, s

0
2, t

0
3, s

0
4, . . . ) , vq = (s1

1, t
1
2, s

1
3, t

1
4, . . . , s

2
2, t

2
3, s

2
4, t

2
5, . . . ) ,
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for the quadrupole field and

v0
d = (s0

1, t
0
2, s

0
3, t

0
4, . . . ) , vd = (t11, s

1
2, t

1
3, s

1
4, . . . , t

2
2, s

2
3, t

2
4, s

2
5, . . . ) ,

for the quadrupole field, where each entry is itself an array of Cheby-
chev coefficients, t01 = (t01,0, . . . , t

0
1,NT−1) , etc., real for m = 0 and

complex for m > 0 .

The matrix M0
B appearing in the magnetic induction equations

(31) and (34), decomposes into 4Nn irreducible real matrices of size
Nr × NT independently of m, for the odd/even poloidal/toroidal
potentials. The magnetic field is stored in four real arrays, which
have the structure,

So = (S0
1 , S

0
3 , . . . , S

1r
2 , S1i

2 , S1r
4 , S1i

4 , . . . , S2r
3 , S2i

3 , S2r,
5 S2i

5 , . . . )

Te = (T 0
2 , T 0

4 , . . . , T 1r
1 , T 1i

1 , T 1r
3 , T 1i

3 , . . . , T 2r
2 , T 2i

2 , T 2r,
4 T 2i

4 , . . . ) ,

for the dipole field and

Se = (S0
2 , S

0
4 , . . . , S

1r
1 , S1i

1 , S1r
3 , S1i

3 , . . . , S2r
2 , S2i

2 , S2r,
4 S2i

4 , . . . )

To = (T 0
1 , T 0

3 , . . . , T 1r
2 , T 1i

2 , T 1r
4 , T 1i

4 , . . . , T 2r
3 , T 2i

3 , T 2r,
5 T 2i

5 , . . . ) ,

for the quadrupole field. Note that S1r
1 and S1i

1 denote the real and
imaginary parts of S1

1 , etc.

The heat equation and the temperature are analogous to the
magnetic potentials, except the n = 0 terms must be included,

Θe = (Θ0
2, Θ

0
4, . . . , Θ

1r
1 , Θ1i

1 , Θ1r
3 , Θ1i

3 , . . . , Θ2r
2 , Θ2i

2 , Θ2r,
4 Θ2i

4 , . . . )

Θo = (Θ0
1, Θ

0
3, . . . , Θ

1r
2 , Θ1i

2 , Θ1r
4 , Θ1i

4 , . . . , Θ2r
3 , Θ2i

3 , Θ2r,
5 Θ2i

5 , . . . ) .

3 Benchmark models

The code has been tested against two benchmark models given in [2].
After an initial transient of large amplitude the solution settles down
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to a steady drift state with four identical rolls, which drift eastward
in Model 0 and westward in Model 1. The velocity components, the
temperature and, in Model 1, the magnetic field components are of
the form vr,θ,φ = v′r,θ,φ(r, θ)f(φ−ωt) , Θ = Θ′(r, θ)f(φ−ωt) , Br,θ,φ =
B′

r,θ,φ(r, θ)f(φ−ωt) , where ω is the drift rate. The benchmark values
are the average kinetic Ev and shell magnetic EB energy densities,

Ev =
1

2Vs

∫
V

v2 dV , EB =
1

4E Pm Vs

∫
V

B2 dV ,

and the values of vφ, Θ and Bθ at r = (ro + ri)/2 and θ = π/2 ,
where the value of φ is given by vr = 0 and ∂φvr > 0 .

3.1 Model 0: no-slip rotating thermal
convection

The magnetic field and its associated terms, equations and boundary
conditions are ignored. The velocity and temperature boundary
conditions are (31) and (33). The initial (t = 0) fields in ri ≤ r ≤ ro

are sm
n = 0 , tmn = 0 ,

Θ0
0 = rori/r−ri , Θ4

4 =
1

40
√

π
(1−3x2+3x4−x6) , x = 2r−ri−ro ,

and all other Θm
n = 0 , m ≥ 0 . The parameter values are ri = 7/13 ,

ro = 20/13 , E = 5 × 10−4 , Pr = 1 and Ra = 50 . Results are
shown in Table 1, including the benchmark values. The agreement
is accurate to three significant figures.
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Table 1: Results for Models 0 & 1.
Model 0 Benchmark 0 Model 1 Benchmark 1

dt 10−4 10−4 10−4

tmax 1.2 5 5 15
Nr 25 25 25 65
Nθ 48 36 48 128
Nφ 65 49 65
Nn 32 18 32
Ev 58.348 58.348± .050 30.50 30.42 30.773± .020
EB 625.09 621.53 626.41± .40
Θ 0.4287 0.42812± .00012 0.3972 0.37338± .00040
vφ −10.139 −10.1571± .0020 −8.181 −7.6250± .0060
Bθ −4.799 −4.9289± .0060
ω 0.18234 0.1824± .0050 −3.0341 −3.1017± .0040

3.2 Model 1: dynamo with insulating
inner-core

The boundary conditions are (31)–(33). The initial (t = 0) fields in
ri ≤ r ≤ ro are sm

n = 0 , tmn = 0 ,

Θ0
0 = rori/r−ri , Θ4

4 =
1

40
√

π
(1−3x2+3x4−x6) , x = 2r−ri−ro ,

all other Θm
n = 0 , m ≥ 0 ,

S0
1 = −(5/8

√
3)(3r2 − 4rro + ri

4/r2) , T 0
2 = 2

√
5/3 sin π(r − ri) .

all other Sm
n = 0 and Tm

n = 0 , m ≥ 0 . The parameter values are
ri = 7/13 , ro = 20/13 , E = 5×10−4 , Pr = 1 , Ra = 50 and Pm = 5 .
Results are shown in Table 1, including the benchmark values. Here
the agreement is accurate to about two significant figures. The
disagreement is most probably due to the lower truncation levels
used in the present work. The computing resources necessary to
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achieve the higher truncation levels of the benchmark and the longer
integration time are not available for the present work.

4 Concluding remarks

In summary, the dynamical dynamo equations have been solved
in a spherical shell for two benchmark models, thermal convection
with fixed inner-core and a convective dynamo with insulating fixed
inner-core. Higher truncation level should improve agreement with
the benchmarks. The code has been extended to incorporate an
electrically-conducting, no-slip inner-core, which can rotate freely
about the rotation axis of the mantle under the control of the axial
viscous and magnetic torques at the inner-core boundary. A related
code is being developed for spherical conducting region. Work is
also actively underway to incorporate anisotropic diffusivities [7].
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